Мегаобучалка Главная | О нас | Обратная связь

Классификация поверхностей второго порядка




Понятие поверхности второго порядка.

 

Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2 + а22у2 + a33z2+ 2a12xy + 2a23уz + 2a13xz + 2а14 x + 2а24у+2а34z +а44 = 0 (1)

в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13 отличен от нуля.

Уравнение (1) мы будем называть общим уравнением по­верхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной де­картовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравне­ние (1) и уравнение, полученное после преобразования коор­динат, алгебраически эквивалентны.

Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стан­дартное упрощение уравнения этой поверхности. В резуль­тате указанных операций уравнение поверхности примет вид

a11х2 + а22у2 + a33z2 + а44 = 0 (2)

Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 • а22 • a33 , то коэффициенты a1122 , a33 удовлетворяют условию :

 
 

 

 

Возможны следующие случаи :

 

1°.Коэффициенты a1122 , a33 одного знака, а коэффициент а44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a1122 , a33 , а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют коорди­наты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a1122 , a33 противоположен знаку коэффициента а44 , то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа



положительны. Обозначим эти числа соответственно а2, b2, с2. После не­сложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

Уравнение (3) называется каноническим уравнением эллип­соида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

2°. Из четырех коэффициентов a1122 , a33 , а44 два одного зна­ка, а два других—противоположного. В этом случае поверх­ность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0, а22 > 0, a33 < 0, а44 < 0. Тогда числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:

 

Уравнение (4) называется каноническим уравнением однопо­лостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу и Oz называются его глав­ными осями.

. Знак одного из первых трех коэффициентов a1122 , a33 , а44 противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канониче­ской форме. Пусть, ради определенности, a11 < 0, а22 < 0, a33 > 0, а44 < 0. Тогда :

Обозначим эти числасоответственно через a2, b2, с2. Поcли несложных преобразова­ний уравнение (2) двуполостного гиперболоида можно запи­сать в следующей форме:

 

 

Уравнение (5) называется каноническим уравнением двупо­лостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим

уравнением, то оси Ох, Оу и Оz называются его главными осями.

. Коэффициент а44 равен нулю. В этом случае поверхность S называется конусом второго порядка.

Если коэффициенты a11 , а22 , a33 одного знака, то левая часть (2) обращается в нуль (а44 = 0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 , а22 , a33 имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка за­писывают в канонической форме. Пусть, ради определенности,

a11 > o, а22 > 0, a33 < 0. Обозначим

соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде

 

 

Уравнение (6) называется каноническим уравнением веще­ственного конуса второго порядка.

 

2. Классификация нецентральных поверхностей второго по­рядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3равен нулю. Произведем стандартное упрощение урав­нения этой поверхности. В результате уравнение поверхности примет вид

11х´2 + а´22у´2 + 33z´2 + 2а´14 x´ + 2а´24у´+2а´34z´ +а´44 = 0 (7)

для системы координат Ox´y´z´

Так как инвариант I3 = 0 и его значение, вы­численное для уравнения (7) , равно

11 • а´22 • a´33 , то один или два из коэффициентов 11 , а´22 , a´33 равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.


. Один из коэффициентов a´11 , а´22 , a´33 равен нулю. Ради определенности будем считать, что33 = 0 (если равен нулю ка­кой-либо другой из указанных коэффициентов, то можно перей­ти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, z по формулам

 

Подставляях', у' и z', найденные из (8), в левую часть (7) и заменяя затем

11 на a11 , а´22 на а22 , а´34 на p и а´44на q , получим следующее уравнение поверхности S в новой системе ко­ординат Oxyz :

a11х2 + а22у2 + 2pz + q = 0 (9)

 

 
 

1) Пусть р = 0, q = 0. Поверхность S распадается на пару пло­скостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11 и а22 одинаковы, и вещественными, если знаки a11 и а22 различны.

2) Пусть р = 0, q ≠ 0. Уравнение (9) принимает вид

 

a11х2 + а22у2 + q = 0 (10)

 

Известно, что уравнение (10) яв­ляется уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , q имеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. ци­линдр будет мнимым. Если же среди коэффициентов a11 , а22 , q имеются коэффициенты разных знаков, то цилиндр будет ве­щественным. Отметим, что в случае, когда a11 и а22 имеют одинаковые знаки, a q — противоположный, то величины

положительны.

 

 

Обозначая их соответственно через а2 и b2, мы приведем уравнение (10) к виду

 

 

Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что урав­нение гиперболического цилиндра может быть приведено к виду

3) Пусть р0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами

(0, 0, ).

 

При этом оставим старые обозначения координат х, у, z. Очевидно, для того чтобы получить уравнение поверх­ности S в новой системе координат, достаточно заменить в урав­нении (9)

 

Получим следующее уравнение:

a11х2 + а22у2 + 2pz = 0 (13)

 

Уравнение (13) определяет так называемые параболоиды. Причем если a11 и а22 имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:

 

 

Уравнение (14) легко получается из (13). Если a11 и а22 имеют разные знаки, то параболоид называется гиперболиче­ским. Каноническое уравнение гиперболического параболоида имеет вид

Это уравнение также легко может быть получено из (13).

2°. Два из коэффициентов a´11 , а´22 , a´33 равны нулю. Ради определенности будем считать, что 11 = 0 и а´22 = 0 Перейдем от х,', у', z' к. новым координатам х, у, z по формулам :

 

 

Подставляя х', у' и z' , найденные из (16) в левую часть (7) и заменяя затем 33 на a33 , 14 на р , a´24 на q и 44 на r , по­лучим следующее уравнение поверхности S в новой системе ко­ординат Охуz :

a33 z2 + 2px + 2qy + r = 0 (17)

 


1) Пусть р=0, q=0. Поверхность S распадается на пару па­раллельных плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a33 и r одинаковы, и вещественными, если знаки a33 и r различ­ны, причем при r = 0 эти плоскости сливаются в одну.

2) Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг оси Oz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, у и z для новых координат точек, уравнение (17) примет вид

 

a33 z2 + 2q´y = 0 (19)

 

которое является уравнением параболического цилиндра с обра­зующими, параллельными новой оси Ох.





Читайте также:

CASE-средства. Общая характеристика и классификация
А. Классификация по субъектам правотворческого процесса.
Адрено- и симпатолитические средства. Механизм действия. Классификация. Фармакологические эффекты и применение.
Адрено- и симпатомиметические средства. Классификация. Механизмы действия. Фармакологические эффекты и применение.
Алиментарные заболевания. Классификация.
Алиментарные заболевания. Классификация.
Аналептики. Классификация. Механизмы действия. Фармакологические эффекты. Применение.
Анализ и классификация технологических переменных, управляющих воздействий, точек измерения, контроля и управления
Антиагреганты. Классификация. Механизмы действия. Применение.
Антигипертензивные средства. Классификация. Средства преимущественно центрального действия: механизмы действия, применение, побочные эффекты.






Читайте также:

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)