Мегаобучалка Главная | О нас | Обратная связь

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ. Измерение коэффициента теплопроводности воздуха методом НАГРЕТОЙ НИТИ




Измерение коэффициента теплопроводности воздуха методом НАГРЕТОЙ НИТИ

ЦЕЛЬ РАБОТЫ

 

Экспериментальное определение коэффициента тепло-проводности воздуха, находящегося вокруг нагретой элек-трическим током нити. В работе определяется электричес-кая мощность, выделяемая в нити и температура нити.

 

 

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ

 

Тела, находящиеся при различных температурах, могут обмениваться внутренней энергией. Перенос энергии, теп-лообмен – это самопроизвольный, необратимый процесс распространения тепла в пространстве, обусловленный раз-ностью температур.

Различаются три основных способа переноса тепла.

1. Теплопроводность – перенос, обусловленный взаимо-действием микрочастиц соприкасающихся тел, имеющих равную температуру.

2. Конвекция – перенос вследствие пространственного перемещения вещества.

3. Теплововое излучение – перенос посредством электро-магнитного поля с двойным взаимным превращением теп-лоты в энергию поля и наоборот.

В реальных тепловых процессах, как правило, перенос тепла осуществляется одновременно тремя способами. В данной работе изучается первый из них.

При отсутствии конвекции (макроскопического пере-мешивания теплых и холодных масс воздуха) перенос тепла происходит благодаря теплопроводности, связанной с теп-ловым движением молекул. Молекулы при этом обме-ниваются энергией, поэтому в основе теплопроводности ле-жит процесс переноса энергии. Поток тепла при этом оп-ределяется градиентом температуры:



 

, (2.4.1)

 

где – мощность, пересекающая воображаемую площадку , установленную перпендикулярно тепловому потоку;

– координата, вдоль которой направлен градиент тем-пературы ;

– коэффициент теплопроводности.

Рассмотрим случай, когда поток тепла направлен от нагретой нити к стенкам внешней цилиндрической оболоч-ки (рис. 2.4.1)

При нагревании нити вдоль ра-диуса трубки создается градиент температуры. Площадь, через кото-рую передается тепло, равна пло-щади поверхности цилиндра, ко-аксиального с нагретой нитью. При этом поток тепла через любую промежуточную цилиндри-ческую оболочку радиуса ( ) и площадью можно определить, пренебрегая утечками тепла через тор-цы цилиндра:

, (2.4.2)

 

где – длина цилиндра радиуса ,

– интервал времени

Из (2.4.2) получим выражение для мощности теплого по-тока через внутреннюю цилиндрическую поверхность труб-ки радиуса . По определению, мощность теплого потока:

.

 

Полученное дифференциальное уравнение решим мето-дом разделения переменных:

 

.

 

Поскольку , проинтегрируем левую часть от ра-диуса нити до радиуса трубки , а правую – от темпе-ратуры нити до температуры стенок трубки . С учетом знаков получим:

 

, ,

 

. (2.4.3)

 

Опыт проводится при постоянной температуре трубки, равной . При этом увеличение электрической мощности, выделяемой в нити, на величину приводит к воз-растанию ее температуры на . Поэтому из (2.4.3) сле-дует

 

. (2.4.4)

 

Так как вблизи нити теплопроводность воздуха опреде-ляется температурой нити, то в (2.4.4) величина относится к температуре . При возрастании температуры нити на дополнительный перенос мощности на от нити к стенки трубки определяется только теплопровод-ностью слоя воздуха в близи нити. Из соотношения (2.4.4) получим

(2.4.5)

 

Для определения производной необходимо знать зависи-мость , которую находят по экспериментальным данным.

Мощность теплового потока находится по нап-ряжению , измеренному на нити, и току , теку-щему через образцовое сопротивление и нить. Для оп-ределения тока измеряется напряжение на образцовом со-противлении . Температура нити определяется из отно-шения

 

, (2.4.6)

 

где – сопротивление нити при , Ом;

– сопротивление нити при температуре опыта, Ом;

– температурный коэффициент сопротивления мате-риала нити, .

Формула (2.4.5) позволяет по найденной эксперимен-тальной зависимости определить .





Читайте также:





Читайте также:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы


(0.003 сек.)