Мегаобучалка Главная | О нас | Обратная связь


Обследование химической агрессивности производственной среды



2015-11-09 1882 Обсуждений (0)
Обследование химической агрессивности производственной среды 0.00 из 5.00 0 оценок




 

2.3.1. Нормируемые параметры производственной среды зданий промышленных предприятий в зависимости от их функционального назначения регламентируются ГОСТ Р 21.1501*, СНиП II-3, СНиП 2.04.05 и отраслевыми инструктивно-нормативными документами.

___________________

* Здесь и далее по тексту. Вероятно ошибка оригинала. Следует читать ГОСТ Р 21.501. - Примечание "КОДЕКС".

 

2.3.2. Степень агрессивности производственных сред на строительные конструкции зависит от характера среды (газо-воздушная, жидкая, твердая), условий эксплуатации (внутри отапливаемого и неотапливаемого помещений или на открытом воздухе), группы газов (А, В, С или Д), температурно-влажностного режима помещений, вида и концентрации агрессивных реагентов, вида материалов и строительных конструкций.

 

2.3.3. Степень воздействия агрессивных сред на строительные конструкции определяется:

 

- для газовых сред - видом и концентрацией газов, растворимостью газов в воде, относительной влажностью и температурой;

 

- для жидких сред - наличием и концентрацией агрессивных агентов, насыщенностью воды газами, водородным показателем рН, величиной напора или скоростью движения жидкости у поверхности конструкций;

 

- для твердых сред (соли, аэрозоли, пыли, грунты) - дисперсностью, растворимостью в воде, гигроскопичностью, влажностью и температурой окружающей среды.

 

2.3.4. Состав работ и методика измерения вредных веществ в производственной среде должны соответствовать требованиям ГОСТ Р 21.1501-92, ГОСТ 12.1.016.

 

2.3.5. При обследованиях производственной среды следует выявить основные источники агрессивных выделений, определить вид, концентрацию, температуру, интенсивность и пределы распространения последних. Затем устанавливаются причины выделения вредностей и составляется перечень конструкций, подвергающихся воздействию данного реагента. Целесообразно все виды обследований производственной среды совмещать по времени, что позволяет получить наиболее полную характеристику эксплуатационной среды.

 

Изучение степени агрессивности эксплуатационной среды, загазованности и запыленности воздуха помещений проводится в теплый и холодные периоды года, в разное время суток, в зависимости от режима эксплуатации технологического оборудования. Отбор проб следует произвести в рабочей зоне, в зоне расположения обследуемых конструкций, под перекрытиями и покрытием, в зоне аэрационных и вентиляционных устройств и вблизи технологических источников выделения вредностей.

 

2.3.6. Инструментальными замерами необходимо зафиксировать пики выделений вредностей и их повторяемость во времени. При циклическом характере технологического процесса пробы отбираются в наиболее характерные периоды для данного вида производства: при максимальных и минимальных выделениях (с указанием длительности цикла и его частоты) и в течение технологического этапа, наиболее продолжительного.

 

В момент отбора проб необходимо регистрировать температуру и относительную влажность внутреннего воздуха, а также отмечать все отклонения и изменения в ходе технологического процесса.

 

Полученные по характерным участкам помещения данные о наличии агрессивных реагентов в производственном помещении и их воздействии на различные строительные конструкции заносятся в таблицу.

 

2.3.7. В зависимости от степени агрессивности эксплуатационной среды и материала конструкции разрабатываются мероприятия по защите строительных конструкций от коррозии согласно рекомендациям СНиП 2.03.11 и других документов.

 

ОБСЛЕДОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

Обмерные работы

 

3.1.1. Целью обмерных работ является выявление действительных геометрических размеров здания в целом и его отдельных конструкций и установление их соответствия проектным данным. При отсутствии проектной документации на основе обмерных работ разрабатывается проектная документация на здание и его основные элементы.

 

3.1.2. Состав и количество обмерных работ устанавливаются на этапе предварительного обследования и зависят от задач обследования, наличия проектной документации, проведенных ранее реконструкций здания и отдельных конструкций и т.д.

 

3.1.3. Обмерами определяются конфигурация, размеры, положение в плане и по вертикали конструкций и их элементов. Должны быть проверены основные размеры конструктивной схемы здания: длины пролетов, шаги и высоты колонн, сечения конструкций, узлы опирания балок и другие геометрические параметры.

 

При проведении обмерных работ следует соблюдать требования ГОСТ 26433, ГОСТ 26433.1.0*, регламентирующих систему обеспечения точности и правил выполнения измерений обследуемых параметров.

_____________________

* Номер ГОСТа соответствует оригиналу. - Примечание "КОДЕКС".

 

3.1.4. Для обмеров отдельных конструкций и их элементов используются рулетки, деревянные складные рейки с нанесенными на них делениями, наборы металлических линеек и угольников разной длины, штангенциркули, уровни, отвесы, а для проведения линейных измерений здания - лазерные дальномеры и другие современные измерители длины.

 

3.1.5. Обмерные чертежи выполняются в масштабе 1:100-1:200, чертежи фрагментов и узлов - в масштабе от 1:50 до 1:5. В процессе натурных обследований результаты обмеров наносятся на предварительно подготовленные копии рабочих чертежей проекта здания или на эскизы для последующего изготовления обмерных чертежей.

 

Размеры и высотные отметки конструкций проставляются на обмерных чертежах в соответствии с правилами оформления архитектурно-строительных рабочих чертежей (ГОСТ Р 21.1501).

 

 

Измерения прогибов и деформаций

 

3.1.6. Деформации и прогибы в конструкциях возникают вследствие перегрузок, неравномерной осадки фундаментов, пучения грунтов оснований, температурных воздействий при изменении уровня грунтовых вод и влажностного режима грунтов оснований, потерь устойчивости несущих конструкций и других внешних воздействий. Нередко характер развития деформаций конструкций может свидетельствовать о причинах, их обусловливающих.

 

Допустимые пределы деформаций и прогибов зависят от материала и вида конструкций и регламентируются нормами проектирования конструкций зданий.

 

3.1.7. Отклонения от вертикали и искривления в вертикальной плоскости конструкций могут быть измерены с помощью отвеса и линейки. Смещения по горизонтали от опорных точек, а также вертикальные перемещения определяются измерениями с помощью приборов: теодолита Т-1, лазера "LM200", лазерного нивелира "PLS3-set".

 

3.1.8. Величины прогибов, искривлений конструкций и их элементов измеряются тонкой проволокой, располагаемой между краями конструкции или ее частями, не имеющими деформации, и измерением максимального расстояния между проволокой и поверхностью конструкции с помощью линейки.

 

Величины прогибов могут быть определены также с помощью прогибомера П-1 и гидростатического уровня.

 

При использовании прогибомеров измеряется величина перемещения элемента, закрепленного на деформирующемся участке конструкции, относительно неподвижного элемента. В качестве прогибомера могут быть использованы две планки или система, передающая перемещения от недеформируемой конструкции на измерительный прибор, в качестве которого обычно используется индикатор часового типа (мессура).

 

При малых линейных деформациях измерение прогибов элементов производится при помощи тензометров, а сдвиги и повороты - геодезической съемкой.

 

3.1.9. Деформацию перекрытий определяют прогибомером или нивелиром НВ-1 со специальной насадкой.

 

Перед началом замеров шток устанавливают в такое положение, чтобы показания в мерной трубке соответствовали нулю. Затем трубку с диском передвигают по поверхности потолка; через каждый полный поворот диска снимают отсчеты по мерной трубке. Прогибы замеряют в различных точках потолка.

 

Таким же образом прогибомером П-1, нивелиром НВ-1 измеряют прогибы несущих элементов лестниц - балок, маршей и плит.

 

3.1.10. Определение кинетики развития деформаций осуществляется путем многократных их измерений через определенные интервалы времени (от 1 до 30 сут) в зависимости от скорости развития деформации.

 

3.1.11. Наблюдения за деформациями зданий и сооружений, находящихся в эксплуатации, проводят в случаях появления трещин, раскрытия швов, перемещения и наклона строительных конструкций, а также резкого изменения условий эксплуатации. Цель наблюдения за деформациями состоит в том, чтобы установить, стабилизировались или продолжают развиваться осадки здания и изменения в конструкциях.

 

Если в процессе наблюдения не были выявлены основные и наиболее вероятные причины деформаций, то наблюдения продолжают вести длительное время (до года).

 

3.1.12. Для измерений деформаций, осадок, кренов, сдвигов зданий, сооружений и их конструкций применяют методы инженерной геодезии. Измерения производятся специализированными организациями в соответствии с рекомендациями "Руководства по наблюдениям за деформациями зданий и сооружений" (НИИОСП им.Герсеванова, М.: Стройиздат, 1975).

 

 

Методы и средства наблюдения за трещинами

 

3.1.13. При обследовании строительных конструкций наиболее ответственным этапом является выявление трещин и причин их возникновения, а также динамики развития. Трещины могут быть вызваны разными причинами и иметь различные последствия.

 

3.1.14. При наличии трещин в несущих конструкциях зданий и сооружений необходимо установить систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций конструкций и степень их опасности для дальнейшей эксплуатации.

 

Наблюдение за развитием трещин проводится по графику, который в каждом отдельном случае составляется в зависимости от конкретных условий.

 

3.1.15. Трещины выявляются путем осмотра поверхностей конструкций, а также выборочного удаления с конструкций защитных или отделочных покрытий. Следует определить положение, форму, направление, распространение по длине, ширину и глубину раскрытия, а также установить, продолжается или прекратилось их развитие.

 

3.1.16. На каждой трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины.

 

При наблюдениях за развитием трещин по длине концы трещин во время каждого осмотра фиксируются поперечными штрихами, нанесенными краской или острым инструментом на поверхности конструкции. Рядом с каждым штрихом проставляют дату осмотра. Расположение трещин схематично наносят на чертежи общего вида развертки стен здания, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.

 

Трещины и маяки в соответствии с графиком наблюдения периодически осматриваются, и результаты осмотра заносятся в журнал, в котором указываются: дата осмотра, чертеж с расположением трещин и маяков, сведения о состоянии трещин и маяков, сведения об отсутствии или появлении новых трещин и установка на них маяков.

 

3.1.17. Ширину раскрытия трещин рекомендуется определять с помощью микроскопа МПБ-2 с ценой деления 0,02 мм, пределом измерения 6,5 мм и микроскопа МИР-2 с пределами измерений от 0,015 до 0,6 мм, а также лупы с масштабным делением (лупы Бриннеля) или других приборов и инструментов, обеспечивающих точность измерений не ниже 0,1 мм.

 

Глубину трещин устанавливают, применяя иглы и проволочные щупы, а также при помощи ультразвуковых приборов типа УКВ-1М, бетон-3М, УК-10П и др.

 

3.1.18. При применении ультразвукового метода глубина трещины устанавливается по изменению времени прохождения импульсов как при сквозном прозвучивании, так и методом продольного профилирования при условии, что плоскость трещинообразования перпендикулярна линии прозвучивания. Глубина трещины определяется из соотношений:

 

;

 

,

 

где - глубина трещины;

 

- скорость распространения ультразвука на участке без трещин, мк/с;

 

, - время прохождения ультразвука на участке без трещины и с трещиной, с;

 

- база измерения для обоих участков, см.

 

3.1.19. Для оценки деформации и развития трещин следует использовать маяки, позволяющие установить качественную картину деформации и их величину.

 

Маяк представляет собой пластинку длиной 200-250 мм, шириной 40-50 мм, толщиной 6-10 мм из гипса или цементно-песчаного раствора, наложенную поперек трещины, или две стеклянные или металлические пластинки с закрепленным одним концом, каждая по разные стороны трещины. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствует о развитии деформаций.

 

Наиболее простое решение имеет пластинчатый маяк. Он состоит из двух металлических, стеклянных или плексигласовых пластинок, имеющих риски и укрепленных на растворе так, чтобы при раскрытии трещины пластинки скользили одна по другой. Края пластинок должны быть параллельны друг другу. После прикрепления пластинок к конструкции отмечают на них номер и дату установки маяка. По замерам расстояния между рисками определяют величину раскрытия трещины.

 

Маяк устанавливают на основной материал стены, удалив предварительно с ее поверхности штукатурку. Рекомендуется размещать маяки также в предварительно вырубленных штрабах (особенно при их установке на горизонтальную или наклонную поверхность). В этом случае штрабы заполняются гипсовым или цементно-песчаным раствором. Осмотр маяков производится через неделю после их установления, а затем один раз в месяц. При интенсивном трещинообразовании обязателен ежедневный контроль.

 

3.1.20. Маяк конструкции Ф.А.Белякова состоит из двух прямоугольных гипсовых или алебастровых плиток размером 100х60 мм и толщиной 15-20 мм.

 

В каждой из плиток на вертикальной и горизонтальной гранях закреплены пять металлических шпилек с острым концом, выступающим на 1-2 мм. Для наблюдения за развитием трещины две такие плитки крепят на гипсовом или алебастровом растворе по обе стороны трещины, чтобы шпильки были расположены на прямых, параллельных друг другу: шпильки 1, 2, 3, 4 на вертикальной плоскости расположились на одной прямой, а четыре другие - 5, 6, 7, 8 - на другой прямой.

 

Приращение трещины измеряют по изменению положения шпилек. Для этого к шпилькам периодически прикладывают чистый лист бумаги, наклеенный на фанеру, и после легкого надавливания измеряют расстояния между проколами по поперечному масштабу. Маяки конструкции Ф.А.Белякова позволяют определить взаимное смещение сторон трещин в трех направлениях.

 

3.1.21. Ширина раскрытия трещин в процессе наблюдения измеряется при помощи щелемеров или трещиномеров.

 

3.1.22. Щелемер конструкции ЛенГИДЕПА состоит из двух латунных пластин, одна из которых расположена в специально выточенном пазу второй пластины. На обеих пластинах имеются шкалы с миллиметровыми делениями, причем на П-образной пластине сделана прорезь для чтения делений шкалы на внутренней (второй) пластине. Пластины крепятся к изогнутым штырям, свободные концы которых заделываются в бетон. Описанный щелемер позволяет определить величину развития трещин по трем направлениям.

 

3.1.23. Используется также щелемер, у которого счетным механизмом служит мессура. Данные измерений по мессуре увязываются с температурой воздуха, на которую вводится соответствующая поправка; окончательную величину отсчета , мм, определяют по формуле

 

,

 

где - отсчет по мессуре, мм;

 

- коэффициент линейного расширения металла плеча мессуры;

 

- температура воздуха в момент отсчета;

 

- длина плеча мессуры, мм.

 

3.1.24. Щелемер для длительных наблюдений состоит из двух элементов, каждый из которых представляет собой цилиндр из некорродирующего металла с полушаровой головкой, укрепленной на квадратном фланце из листовой стали. Для закрепления фланца в бетоне к нему приваривается анкерная скоба. Пара таких элементов устанавливается по обе стороны трещины. Измерение расстояния между ними во время каждого осмотра производится штангенциркулем дважды: в обхват цилиндров и в обхват полушаровых головок с упором ножек штангенциркуля в торцы цилиндров. Однозначность изменений расстояний по обоим измерениям между циклами укажет на отсутствие ошибок при производстве замеров.

 

3.1.25. Для наблюдений за трещинами и осадками в стенах применяют стрелочно-рычажное устройство. Оно состоит из деревянной или металлической стрелки длиной 0,7-1 м, шарниров и мерной шкалы. Шарниры, закрепляющие стрелку на стене, расположены по обе стороны от трещины. Длина остальной свободной части стрелки в 10 раз больше расстояния между указанными шарнирными креплениями.

 

Таким образом, вертикальному смещению одного шарнира относительно другого соответствует в 10 раз большее смещение вверх или вниз конца стрелки над мерной шкалой (металлической или деревянной рейкой).

 

В этих условиях величина осадок по обе стороны трещины в 1 мм соответствует смещению конца стрелки на 10 мм. При установке прибора на стене свободный конец стрелки помещается над нулевым делением мерной шкалы.

 

В журнале наблюдений за трещинами фиксируются номер и дата установки маяка или щелемера, место и схема их расположения, первоначальная ширина трещины, изменение со временем длины и глубины трещины. По данным измерений строят график хода раскрытия трещин. В случае деформации маяка рядом с ним устанавливается новый, которому присваивается тот же номер, но с индексом.

 

Маяки, на которых появились трещины, не удаляют до окончания наблюдений. Если в течение 30 сут изменение размеров трещин не будет зафиксировано, их развитие можно считать законченным, можно снять и трещины заделать.

 



2015-11-09 1882 Обсуждений (0)
Обследование химической агрессивности производственной среды 0.00 из 5.00 0 оценок









Обсуждение в статье: Обследование химической агрессивности производственной среды

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1882)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)