Мегаобучалка Главная | О нас | Обратная связь

Описание установки и метода измерения




 

Большинство косвенных методов измерения ускорения свободного падения g основано на использовании формулы для периода гармонических колебаний физического маятника

 

, (1)

 

где J - момент инерции маятника относительно оси качания (точки подвеса), m - масса маятника, a - расстояние от центра массы до оси качания (см. рис. 1). Однако формула (1) непосредственно для вычисления g не используется, так как момент инерции J и расстояние a обычно не могут быть измерены достаточно точно. Поэтому применяются такие методы, которые позволяют исключить данные величины из расчетной формулы для вычисления g.

В данной работе это достигается путем использования физического маятника в форме длинного стержня.

Маятник представляет собой однородный стержень (рис. 1) с опорной призмой П, которую можно перемещать вдоль стержня и закреплять в любом его месте. Для определения положения призмы на стержне нанесена шкала с делениями через 1 см.

Период колебаний маятника, который выражается формулой (1), можно записать в виде

, (2)

 

где называется приведенной длиной физического маятника.

Момент инерции стержня относительно оси качания запишем по теореме Штейнера:

, (3)

 

где J0 момент инерции стержня относительно оси, проходящей через центр массы C (середину стержня) параллельно оси качания.

Для стержня

.

 

Для любого тела момент инерции J0 можно представить в виде

 

. (4)

 

Величина a0 называется радиусом инерции и имеет определенное значение для каждого тела. Для стержня

 

 

Используя формулы (3) и (4), получим выражение для приведенной длины

,

 

и периода колебаний

.

 

Таким образом, приведенная длина и, следовательно, период колебаний маятника являются функциями расстояния от центра массы до оси качания.

Из этих формул видно, что L и T стремятся к бесконечности при двух значениях a: при a®0 и при a®¥. Для определения значений при которых период является экстремальным, найдем производную dL/da и приравняем ее к нулю:

 

,



 

откуда a = ± a0 .Значит, T = Tmin, если опорная призма закреплена на расстоянии a0 » l/3 от середины стержня. Второе расстояние a = a0 означает, что если перевернуть стержень, то для точек подвеса, симметричных относительно середины, периоды колебаний будут одинаковы.

Из графика (риc. 2) видно, что при увеличении или уменьшении расстояния a по сравнению с a0 период колебания увеличивается. Поэтому одно и то же значение периода, большее чем Tmin, маятник может иметь при двух положениях опорной призмы: при и . Для этих положений опорной призмы будут одинаковы и приведенные длины маятника, что следует, из формулы (2):

 

,

 

откуда . Тогда

(5)

 

Приведенная длина (рис. 2) L = MN + MK. Очевидно, что другому периоду колебаний будет соответствовать другая приведенная длина.

После подстановки (5) в (2) получим

 

,

 

откуда

. (6)

 

Формула (6) является расчетной для вычисления ускорения

свободного падения. Значения и T определяют по экспериментально построенному графику. Для этого опорную призму перемещают вдоль стержня и для каждого ее положения измеряют период колебаний. При проведении опыта и построении графика вместо расстояния a удобнее брать расстояние от конца стержня до призмы, которое на рис. 1 обозначено х.

 





Читайте также:





Читайте также:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)