Мегаобучалка Главная | О нас | Обратная связь

Порядок выполнения работы. 1. Подключить динамик к генератору электрических колебаний звуковой частоты




 

1. Подключить динамик к генератору электрических колебаний звуковой частоты, а микрофон - к осциллографу. Включить генератор и осциллограф в сеть. Частоту генератора задавать примерно 2 - 4 кГц.

2. При помощи стержня приблизить динамик вплотную к микрофону.

3. Медленно выдвигая стержень, по шкале, имеющейся на трубе, замерить длину воздушного столба l1, соответствующую какому-либо максимуму звучания и максимальному значению амплитуды сигнала на экране осциллографа. Этот максимум принять за нулевой.

Увеличивая далее расстояние между динамиком и микрофоном, считая последующие максимумы, взять отсчет длинны столба для некоторого n-го максимума (n брать порядка 4 - 6). Опыт повторить пять раз. Результаты записать в табл. 1

 

Таблица 1

 

Опыт i l1i, м l2i, м ni li, м ui, м/с ν, Гц
           
           
           
           
           

 

4. По формуле (3) вычислить длину волны, а по (4) - скорость звука в воздухе. Найти среднее значение скорости <u>.

 

Контрольные вопросы

 

1. Что называется волной?

2. Какие волны называются продольными и какие поперечными?

3. От чего зависит скорость распространения продольных и поперечных волн?

4. Написать и пояснить уравнение плоской бегущей волны.

5. Вывести уравнение стоячей волны.

6. Какие точки называются узлами, а какие пучностями?

7. В каких случаях в месте отражения получается узел, а в каких пучность?

8. Объяснить явление резонанса в воздушной трубе, закрытой с двух сторон.

 

Библиографический список

1. Детлаф, А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. – М.: Высш. шк., 1999. – § 29.1–29.3, 29.6.

2.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – § 157.

3. Савельев, И. В. Курс общей физики в 3-х т. Т.1 / И. В. Савельев.– СПб.: Лань, 2005. – § 49,53.

4. Кингсеп, А. С. Основы физики: в 2-х т. Т. 1 / А. С. Кингсеп, Г. Р. Локшин, О. А. Ольхов. – М.: Физматлит, 2001. – Гл. 5 § 5.2, 5.5.



5. Сивухин, Д.В. Общий курс физики: в 5-ти т. Т.1 / Д. В. Сивухин. – М.: Физматлит МФТИ, 2005. – § 85.

6. Курс физики: Учебник для вузов: в 2-х т. Т. 1 / Под ред. В. Н. Лозовского. – СПб.: Лань, 2006. – Гл. 3.5 § 3.15.

 

 

ЛАБОРАТОРНАЯ РАБОТА № 16

ИЗУЧЕНИЕ МЕХАНИЧЕСКИХ ЗАТУХАЮЩИХ КОЛЕБАНИЙ

 

Цель работы: определить основные характеристики затухающих механических колебаний.

Оборудование: специальная установка, снабженная секундомером, счетчиком числа колебаний и градусной шкалой - линейкой.

 

Общие сведения

 

Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости. Наиболее простыми являются гармонические колебания, при которых какая-либо физическая величина, характеризующая колебание, изменяется со временем по закону синуса или косинуса. Примером может служить колебание маленького шарика, подвешенного на длинной нити.

Если пренебречь силой трения, то величина смещения шарика из положения равновесия изменяется по закону

 

,

или (1)

,

 

где A - амплитуда колебания; w0 - циклическая частота; a1, a2 - начальные фазы колебания.

Колебательные процессы будут незатухающими, если они совершаются под действием только упругой или квазиупругой силы. В любой реальной колебательной системе всегда существует сила сопротивления, поэтому все реальные колебательные процессы затухающие.

Отклоним шарик, подвешенный на нити, из положения равновесия (рис. 1). Применив к нему второй закон Ньютона, имеем

 

, (2)

или

,

где m - масса шарика, a - ускорение, - квазиупругая сила, - сила сопротивления.

При малых колебаниях F1 = - kx, а FC = -, где x - смещение, r - коэффициент сопротивления. Введем следующие обозначения:

 

. (3)

 

Тогда уравнение (2) примет вид:

 

. (4)

 

Уравнение (4) называется уравнением динамики затухающих гармонических колебаний, где b - коэффициент затухания.

Если затухание невелико (b<w0), то решением уравнения (4) является выражение

 

. (5)

 

Здесь e - основание натурального логарифма.

Графически это решение представлено на рис. 2. Амплитуда затухающих колебаний изменяется по экспоненциальному закону.

Следует отметить, что затухающие колебания не являются периодическими, т.к. через одинаковые промежутки времени состояние наблюдаемой системы в точности не повторяется. Однако эти колебания условно характеризуют частотой и периодом в том смысле, что колеблющаяся система проходит положение равновесия в одном и том же направлении через равные промежутки времени.

Частоту затухающих колебаний определим по формуле

 

,

где - частота собственных колебаний системы при отсутствии силы сопротивления.

Изучать затухающие колебания можно только при b<w0. При b>w0 колебания становятся апериодическими.

Отметим, что в данной работе период затухающих колебаний незначительно отличается от периода свободных колебаний, т.е. b<<w0.

Для характеристики быстроты затухания колебаний вводят величину, называемую логарифмическим декрементом затухания d, который числено равен натуральному логарифму отношения двух амплитудных значений изменяющийся величины, отстоящих по времени одно от другого на период:

 

. (6)

 

Выясним физический смысл этой характеристики.

Пусть за t секунд амплитуда колебаний уменьшится в e раз. Тогда из (6), зная, что lne = 1, имеем

 

bt = 1. (7)

 

Тогда из (6) с учетом (7) получим

 

, (8)

 

где Ne - число колебаний, совершенных системой за время t.

Из выражения (8) следует, что d есть величина, обратная числу колебаний Ne, совершенных системой за время, в течение которого амплитуда уменьшится в e раз. Время t называется временем релаксации.

Скорость затухания колебаний характеризуется также физической величиной, называемой добротностью Q, которая может быть определена как отношение максимального значения квазиупругой силы к максимальной силе сопротивления:

 

.

 

Максимальное значение квазиупругой силы F1max = kA, где , (см. (3)).

Максимальное значение силы сопротивления пропорционально максимальной скорости Fcmax = rumax, где umax = Aw0 (см. (3)).

Тогда

.

 

Сделав замену ω0 = 2π/T и учитывая (6), окончательно получим

 

. (9)

 

Из выражения (9) следует, что добротность колебательной системы тем выше, чем большее число колебаний успевает совершиться, прежде чем амплитуда уменьшится в e раз.

При слабом затухании добротность системы пропорциональна отношению энергии W, запасенной в системе, к убыли этой энергии ΔW за один период:

 

. 10

 

В этом заключается энергетический смысл добротности колебательной системы.

 

Описание установки

На передней панели прибора (рис. 3) имеются три клавиши: 1 (сеть) - выключатель сети; 2 (пуск) - запуск счетчика колебаний и секундомера; 3 (стоп) - остановка счетчика колебаний и секундомера.

На стойке 4 подвешен металлический шарик 5. Амплитуду колебания шарика можно измерить по шкале 6.

В работе определяются основные характеристики затухающих колебаний при различных силах сопротивления. Для изменения силы сопротивления плоскость колебания шарика ручкой 7 можно отклонить от вертикального положения на угол g, величину которого можно измерять по шкале 8. При этом шарик, совершающий колебания, начнет кататься по гладкой поверхности плоской панели. В этом случае сила сопротивления складывается из двух сил: силы вязкого трения шарика в воздухе, зависящей от скорости, и постоянной силы трения качения. При этом экспоненциальный закон затухания колебаний не нарушается.

 

Рис. 3

На передней панели прибора (рис. 3) имеются три клавиши: 1 (сеть) - выключатель сети; 2 (пуск) - запуск счетчика колебаний и секундомера; 3 (стоп) - остановка счетчика колебаний и секундомера.

На стойке 4 подвешен металлический шарик 5. Амплитуду колебания шарика можно измерить по шкале 6.

В работе определяются основные характеристики затухающих колебаний при различных силах сопротивления. Для изменения силы сопротивления плоскость колебания шарика ручкой 7 можно отклонить от вертикального положения на угол g, величину которого можно измерять по шкале 8. При этом шарик, совершающий колебания, начнет кататься по гладкой поверхности плоской панели. В этом случае сила сопротивления складывается из двух сил: силы вязкого трения шарика в воздухе, зависящей от скорости, и постоянной силы трения качения. При этом экспоненциальный закон затухания колебаний не нарушается.

Следует отметить, что при отклонении от вертикали плоскости колебаний на угол g изменяется период колебаний. Это обусловлено изменением квазиупругой силы F1. В предельном случае, когда угол g = 90, F1 = -kx =0 и колебания совершаться не будут.

 





Читайте также:





Читайте также:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.058 сек.)