Мегаобучалка Главная | О нас | Обратная связь


Ионоселективные электроды



2015-11-06 1835 Обсуждений (0)
Ионоселективные электроды 0.00 из 5.00 0 оценок




 

Ионоселективные электроды – это электроды, которые состоят из двух фаз: ионита и раствора, а потенциал на границе раздела фаз возникает за счет ионообменного процесса, в результате которого поверхность ионита и раствора приобретают электрические заряды противоположного знака. Иониты обладают повышенной избирательной способностью по отношению к определенному виду ионов, находящихся в растворе, поэтому такие электроды и называют ионоселективными.

Все ионоселективные электроды в зависимости от агрегатного состояния ионита (мембраны) подразделяются на электроды с жидкими и твердыми мембранами.

В качестве жидких мембран используют органические жидкости: хлор – бензол, толуол, которые не смешиваются с водой, не растворяют ионогенное вещество, способное к обмену с ионами данного вида в исследуемом растворе.

К твердым мембранам относятся стеклянные, кристаллические: монокристаллы или прессованные пластинки труднорастворимого соединения и др.

В последнее время область применения ионоселективных электродов расширилась благодаря использованию фермента. Например, мочевина под действием уреазы превращается в ион NH+4. С помощью ионоселективного электрода, содержащего уреазу, можно анализировать раствор на содержание мочевины. В настоящее время используют электроды, содержащие ферменты для определения глюкозы, витаминов, антибиотиков, гормонов, аминокислот и др.

Стеклянный электрод

Стеклянные электроды изготавливают из стекла определенного состава. Стекло чаще всего представляет собой соединение диоксида кремния с щелочными и щелочно–земельными оксидами. В результате гидролиза силикатов на поверхности стекла образуется тонкая пленка геля поликремниевой кислоты, незначительно диссоциированной на ионы.

R–O–Si–OH ↔ R–O–Si–Oˉ+ H+

|| ||

О О

Анионы поликремниевой кислоты R–OSiO2ˉ сообщают отрицательный заряд поверхности стекла. Ионы водорода заряжают положительно прилегающий к поверхности стекла слой раствора. Степень диссоциации поликремниевой кислоты зависит от концентрации ионов водорода в растворе.

Одной из распространенных форм стеклянного электрода является стеклянная трубка, заканчивающаяся шариком (рис. ). Шарик заполнен раствором HCl, в который погружен вспомогательный х.с. электрод. Шарик погружают в исследуемый раствор и с помощью мостика стеклянный электрод соединяют с внешним электродом сравнения. Собранную таким образом цепь можно записать следующим образом:

Ag,AgCl | HCl(p )| стекло | исследуемый раствор || KCl(p) || KCl(p) | AgCl,Ag

внутренний φ2 φ3 φ4 внешний электрод электрод

сравнения φ1 сравнения

 

ЭДС этой цепи определяется суммой :φ1 + φ2 + φ3 + φ4.

Скачки потенциалов φ1, φ2 и φ4 постоянны, следовательно, ЭДС цепи изменяется в зависимости от потенциала φ3, зависящей от рН исследуемого раствора.

Рис.8. Стеклянный электрод:

Шарик из стеклянной мембраны; 2 – раствор НСl; 3 – внутренний сереброхлоридный электрод; 4 – исследуемый раствор; 5 – агаровый мостик; 6 – раствор хлорида калия; 7 – внешний сереброхлоридный электрод

 

Электродная реакция сводится к обмену ионами водорода между двумя фазами – раствором и стеклом. В реакцию обмена вовлекаются и ионы щелочных металлов. Устанавливается равновесие

Н+(ст) + М+(р) ↔ Н+(р) + М+( ст)

Условие равновесия этой реакции выражается в законом действующих масс:

ан+(р) · ам+(ст)

Кобм =

ан+(ст) · ам+( р)

 

Размер этой константы обмена зависит от свойств стекла и температуры.

Исходя из предположения, что в стекле данного сорта сумма активностей ионов водорода и ионов щелочного металла постоянна, т.е.

ан+ (ст) + ам+ (ст) = а,

уравнение константы обмена можно представить в следующем виде:

ан+ (р)(а - ан+ (ст))

Кобм =

ан+ (ст) · ам+ ( р)

Решая это уравнение относительно ан+ (р) / ан+ (ст) , получим

ан+ (р) ан+ (р) + Кобм · ам+ ( р)

=

ан+ (ст) а

Потенциал стеклянного электрода (φ0) может быть выражен следующей зависимостью:

RT ан+ (р)

φст = φ˚ст + · ln

zF ан+ (ст)

Замена ан+ (р)/ан+ (ст) в уравнении электродного потенциала стекла его значением приводит к следующей зависимости:

RT

φст = φ˚ст + ln (ан+ (р) + Кобм · ам+ ( р)),

zF

где RT/zF·ln(a) входит стандартный потенциал стеклянного электрода φ0.

Таким образом, в общем случае потенциал любого стеклянного электрода обусловливается двумя величинами – активностью ионов водорода и активностью щелочного металла. Если в растворе ан+ (р) >> Кобм · ам+ ( р), то

RT RT

φст = φ˚ст + ·ln ан+ (р) = φ˚ст – 2,3 ·pH,

ZF F

т.е. электрод обладает водородной функцией и поэтому может служить индикаторным электродом при определении рН.

Если в растворе ан+ (р) << Кобм · ам+ ( р), то

RT RT

φст = φм = φ˚ст + ·ln Кобм + ·ln ам+ ( р),

ZF zF

 

RT

илиφм = φ˚м + ·ln ам+ ( р),

zF

 

во всех уравнениях z=1.

Стеклянный электрод с металлической функцией может использоваться в качестве индикаторного электрода для определения активности соответствующего щелочного металла. Таким образом, в зависимости от сорта стекла, точнее от величины константы обмена, стеклянный электрод может обладать водородной и металлическойфункциями.

ЭЛЕКТРОДЫ ВТОРОГО РОДА.

Электроды второго рода состоят из металла, труднорастворимой соли этого метала и второго соединения, хорошо растворимого и с тем же анионом, что и первое соединение. Условное обозначение таких электродов М׀МА׀А-. Представителями электродов второго рода являются хлорсеребряный и каломельный электроды.

Хлорсеребряный электрод Аg ׀ Ag Cl. KCl

Хлорсеребряный электрод (рис. 9) представляет собой серебряную проволоку, покрытую слоем хлорида серебра и опущенную в сосуд, наполненный насыщенным раствором хлорида калия. Сосуд имеет микрощель для контакта с исследуемым раствором.

 

 

Рис.9. Хлорсеребряный электрод: 1-серебряная проволока; 2-слой AgCl; 3-раствор KCl; 4-микрощель

 

Основной химический процесс:

Аg+ + ē ↔ Аg◦

Сопровождается реакцией растворения или осаждения соли АgСl:

АgСl ↔ Аg+ + Сl ‾

В присутствии хлорида калия, содержащего одноименный с хлоридом серебра ион хлора, растворимость хлорида серебра снижается. При постоянных концентрации KCl и температуре концентрация ионов Аg+ постоянна, чем и объясняется необходимая устойчивость потенциала электрода.

Потенциал хлорсеребряного электрода возникает на поверхности соприкосновения металлического серебра с раствором его ионов и может быть выражен следующим уравнением:

RT

exc = e°Ag+ ∙ ln a(Ag+)

zF

Хлорид серебра трудно растворим в воде. Его произведение растворимости ПР = a(Ag+)∙a(Сl‾), из которого следует что a(Ag+) = ПР/ a(Сl‾). Подставляя a(Ag+) в уравнение для потенциала хлорсеребряного электрода, получим:

RT RT

φхс = φAg°+ ∙ ln(ПР) – ∙ ln a(Сl‾)

ZF zF

Объединяя постоянные при данной температуре величины e°Ag и RT/zF ∙ ln(ПР) в одну величину и обозначая её через e°xc, получают уравнение для потенциала хлорсеребряного электрода:

RT

φхс = φ°хс – ∙ ln a(Сl‾)

zF

Таким образом, потенциал хлорсеребряного электрода в конечном итоге зависит от концентрации (активности) ионов хлора.



2015-11-06 1835 Обсуждений (0)
Ионоселективные электроды 0.00 из 5.00 0 оценок









Обсуждение в статье: Ионоселективные электроды

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1835)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)