Мегаобучалка Главная | О нас | Обратная связь


Автоматизация работы холодильных установок



2015-11-10 1965 Обсуждений (0)
Автоматизация работы холодильных установок 0.00 из 5.00 0 оценок




 

Системы автоматизации. Автоматизация работы холодильных машин в зависимости от выполняемых функций подразделяется на системы:

регулирования, поддерживающие заданное значение регулируемой величины (температуры, давления, количества хладагента и др.);

защиты, т.е для выключения установки при чрезмерном отклонении параметров режима её работы;

сигнализации, т.е. для включения визуального или (и) звукового сигнала при нарушении режима работы холодильной установки;

контроля, когда необходимо контролировать какие-либо режимные параметры работы холодильной машины.

В зависимости от привод в действие системы автоматизации бывают электрические, пневматические и комбинированные, а по принципу действия — позиционные и непрерывные.

Система автоматического регулирования холодильной установки позволяет обеспечить заданный температурный режим для перевозимого груза без участия обслуживающего персонала.

Системой автоматизации называют совокупность объекта автоматизации и автоматических устройств, позволяющих управлять работой этого объекта без участия персонала. Объектом автоматизации могут быть холодильная установка в целом либо отдельные её агрегаты, узлы, аппараты и т.д. Системы автоматизации могут быть замкнутыми и разомкнутыми.

 

 

Рис. 4.26 — Замкнутая система автоматизации

 

Замкнутая система состоит из объекта (Об) и автоматического устройства (А), которые соединены между собой прямой (ПС) и обратной (ОС) связями, которые показаны на рис. 4.26. По прямой связи к объекту подводится входное воздействие х, по обратной — выходная величина у, которые воздействуют на А. Система ОС работает по отклонению фактической величины у от заданного значения уз.

Если назначение системы — поддерживать величину у около заданного значения при изменениях внешнего воздействия fвн, то такую систему называют системой автоматического регулирования (САР), а автоматическое устройство — автоматическим регулятором (АР). Функциональная система САР показана на рис. 4.27.

 

 

Рис. 4.27 — Функциональная схема системы автоматического
регулирования (САР)

 

На функциональной схеме САР в цепь прямой связи входят: усилитель, исполнительный механизм (ИМ) и регулирующий орган (РО). В цепь обратной связи включён датчик, с помощью которого регулятор АР воспринимает регулируемую величину У и преобразует её в величину Уп, удобную для дальнейшей передачи. На один из входов элемента сравнения (ЭС) подаётся преобразованная величина Уп, а на другой его вход — сигнал Уз от задатчика.

Этот сигнал в преобразованном виде представляет собой задание регулятору. Величина согласования d = УзУп является побуждающим сигналом. Мощность его увеличивается в усилителе подводом внешней энергии Эвн и в виде сигнала D воздействует на ИМ, который преобразует сигнал в удобный для использования вид энергии Dх и переставляет в РО. В результате изменяется подводимый к Об поток энергии, что соответствует изменению регулирующего воздействия х.

Если нормальная работа объекта протекает при значениях у, отличающихся от уз, а при достижении равенства между ними в объект посылается сигнал х на отключение, то такую систему называют системой автоматической защиты (САЗ), а автоматическое устройство — устройством защиты (АЗ). Такая функциональная система показана на рис. 4.28.

Схема САЗ отличается от схемы САР тем, что в автоматическом устройстве АЗ отсутствуют ИМ и РО. Сигнал от усилителя воздействует непосредственно на Об, выключая его целиком или отдельные его части.

 

Рис. 4.28 — Функциональная схема системы автоматической защиты (САЗ)

 

 

Рис. 4.29 — Разомкнутая система автоматизации

 

Разомкнутой системой называют систему, в которой одна из связей (обратная или прямая) отсутствует (рис. 4.29). Параметр Z связан с выходной величиной у и воспринимается автоматическим устройством А. Отклонение от заданного значения Z3 вызывает изменения воздействия х.

Автоматизация работы испарителей. Одним из важных процессов управления холодильной машиной является автоматическое питание испарителей по перегреву пара и по уровню жидкости в испарителе. В качестве автоматического регулятора перегрева в основном применяют терморегулирующие вентили (ТРВ).

ТРВ установлен перед испарителем. В верхней части вентиля (рис. 4.30) припаяна капиллярная трубка 7, соединяющая внутреннюю рабочую часть 6 вентиля с термобаллоном 8. Верхняя силовая часть вентиля герметична. Термобаллон плотно прикреплён к всасывающему трубопроводу, соединяющему испаритель с компрессором. Термобаллон, капилляр и пространство над мембраной при изготовлении вентиля заполняют строго дозированным количеством хладона. От донышка мембраны 5 вниз идёт шток 4 с запорным клапаном 3, который прижимается к седлу пружиной 2 с регулировочным винтом 1.

 

 

Рис. 4.30 — Схема терморегулирующего вентиля с внутренним уравниванием

 

Принцип действия ТРВ основан на сравнении температуры кипения хладагента в испарителе с температурой выходящих из него паров. Сравнение производится преобразованием воспринимаемой термобаллоном температуры паров tв в соответствующее давление рс в силовой части прибора (см. рис. 4.30). Давление действует на мембрану сверху и стремится через шток открыть клапан 3 на большее проходное сечение. Такому перемещению клапана препятствует давление кипения хладона в испарителе ро, действующее на мембрану снизу, а также усилие пружины f и давление рк на клапан.

При правильном заполнении испарителя температура паров на выходе из него не должна превышать 4,,,7°С. Для этого весь хладон, поданный через ТРВ в испаритель, должен выкипеть на участке от клапана 3 до точки А. Здесь температура хладона не изменяется и составляет tо. В последних витках испарителя от точки А до термобаллона хладон, продолжая воспринимать тепло от охлаждаемого помещения, перегревается до температуры tв > tо. Температуру tв воспринимает термобаллон, и в силовой системе устанавливается давление рс. При равновесии рс = ро + f + рк происходит допустимо полное заполнение испарит5еля хладоном, и холодильная машина работает в оптимальном режиме.

С понижением температуры в охлаждаемом помещении теплопритоки к испарителю уменьшаются. Кипение хладагента в точке А не заканчивается, а продолжается до точки Б. Путь парообразного хладагента до термобаллона сокращается, и перегрев паров уменьшается. Термобаллон воспринимает более низкую температуру, и в силовой системе устанавливается меньшее значение рс. Под действием пружины клапан перемещается вверх, уменьшая проходное сечение вентиля и тем самым подачу хладагента в испаритель.

При меньшем количестве хладагента кипение его в испарителе заканчивается раньше, и перегрев принимает значение, близкое к первоначальному. Перемещение клапана вверх происходит до установления нового равновесия между снизившимся давлением и уменьшившимся сжатием пружины, т.е. рс = ро + f + рк. Перегрев паров в испарителе регулируют поджатием пружины 2 с помощью регулировочного винта 1.

Термобаллон 8, капилляр 7 и мембрана 5 (см. рис. 4.30) являются основными элементами манометрических приборов-термостатов, которые применяются для автоматического регулирования работы дизель-генераторных и холодильных агрегатов на рефрижераторном подвижном составе.

Автоматическое поддержание температурного режима в грузовых помещениях. Для установления необходимого температурного режима в грузовом помещении рефрижераторного транспортного или складского модуля и автоматического поддержания его в заданных пределах служит прессостат-терморегулятор, устройство которого показано на рис. 4. 31.

 

 

Рис. 4.31 — Устройство прессостата

 

Прессостат устанавливают на всасывающем трубопроводе между испарителем и компрессором. Он состоит из поршня 1, жёстко связанного с ним штока 2, пружины 4, рукоятки 5, двух электрических контактов: подвижного 6 и неподвижного 7.

Поршень находится в колене 3, соединённом со всасывающим трубопроводом 8. При давлении ро, большем чем сила закручивания пружины 4, поршень находится в крайнем верхнем положении. При этом контакты 6 и 7 замкнуты. Компрессор включён и отсасывает пары хладона из испарителя. В процессе отсасывания паров давление ро понижается, становится меньше, чем сила закручивания пружины. Поршень с подвижным контактом перемещается в крайнее нижнее положение, и компрессор выключается.

Вследствие продолжающегося кипения хладона в испарителе его удельный объём увеличивается, давление ро снова начнёт расти. Контакты 6 и 7 замкнутся, компрессор начнёт отсасывать пары хладона из испарителя. Цикл повторяется.

Ход поршня ограничивается специальными упорами, которые могут регулироваться. Сила воздействия пружины на поршень регулируется рукояткой 5. При установке рукоятки в положение «холод» сила закручивания пружины уменьшается. Следовательно, в зоне испарителя установится меньшее давление ро, а значит и низкая температура кипения хладона.

Таким образом прессостат-терморегулятор поддерживает на требуемом уровне давление кипения в испарителе путём управления количеством хладагента, направляющегося в испаритель.

 

Тема 5



2015-11-10 1965 Обсуждений (0)
Автоматизация работы холодильных установок 0.00 из 5.00 0 оценок









Обсуждение в статье: Автоматизация работы холодильных установок

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1965)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)