Мегаобучалка Главная | О нас | Обратная связь

Цель и образовательные задачи изучения нумерации




Тема: Изучение нумерации чисел.

План:

1. Цель и образовательные задачи изучения нумерации.

2. Последовательность изучения нумерации целых неотрицательных чисел.

3. Методика изучения нумерации.

 

 

Основные теоретические положения данного раздела.

В начальном курсе математики под нумерацией понимают совокупность приемов обозначения и наименования натуральных чисел.

Различают устную и письменную нумерацию.

Устная нумерация – совокупность правил, дающих возможность с помощью немногих слов составлять названия для многих чисел. В ходе изучения устной нумерации необходимо раскрыть правила счета, чтения, образования чисел; знать цифры от 0 до 9, слова – числительные – сорок, девяносто, сто, тысяча, миллион, миллиард.

Правила образования названий и чтения чисел.

1. Названия чисел от 10 до 20 образуются с использованием названий, принятых для первых десяти чисел, но имеет свою особенность – при чтении сначала называется нижний разряд, затем остальные. (один – на – дцать; две – на – дцать).

2. Остальные названия чисел образуются по принципу поразрядности; чтение чисел начинается с единиц высшего разряда.

3. При образовании и чтении многозначных чисел соблюдается принцип чтения по классам.

Письменная нумерация – это совокупность правил, дающих возможность с помощью немногих знаков обозначать любые числа. В ходе изучения письменной нумерации вводится понятие «цифры». Проводится целенаправленная систематическая работа по различению понятий «число» и «цифра». Вводятся знаки (цифры) для обозначения первых девяти чисел. Запись всех остальных чисел выполняется с использованием тех же десяти цифр (от 0 до 9), но с помощью двух или более цифр, значение которых зависит от места, которое занимает цифра в записи числа (т. е. поместное значение цифры или позиционный принцип записи чисел).

Устная и письменная нумерация чисел опирается на знание десятичной системы счисления.

Основные понятия десятичной системы счисления:

1. Счетная единица - то, что берем за основу счета. Каждая следующая счетная единица больше предшествующей в 10 раз (один десяток в 10 раз больше одной единицы; одна сотня в 10 раз больше одного десятка и т.д.).



2. Разряд – место цифры в записи числа.

3. Единицы I, II, III разряда и т. д.- единицы, стоящие на первом (единицы), втором (десятки), третьем (сотни) месте в записи числа, считая справа налево.

4. Разрядное число – число, состоящее из единиц одного разряда, например: 10,20,30,40,50,60… – числа, состоящие только из десятков (круглые десятки); 100, 200, 300, …- числа, состоящие только из сотен (круглые сотни); 1000, 2000, 3000 - числа, состоящие только из единиц тысяч (круглые единицы тысяч) и т.п.

5. Неразрядное число – число, состоящее из единиц разных разрядов, например, числа, состоящие из десятков и единиц (11,22,35,47,89); числа, состоящие из сотен и единиц (208, 406); состоящие из сотен и десятков (240, 560); состоящие из сотен, десятков и единиц (346, 683) и т.п.

6. Полные числа – числа, в которых имеются единицы всех разрядов, например, полное трехзначное число 134, четырехзначное 5674

7. Неполные числа – числа, в которых отсутствуют единицы того или иного разряда (в этом случае на их месте пишется нуль), например: неполные трехзначные числа 560, 404, неполные четырехзначные числа 1002, 1020, 1200, 1220 и т.п.

8. Класс – объединение по определенным признакам единиц трех разрядов. Каждая единица следующего класса больше предшествующей в тысячу раз. (Так, 1 единица класса единиц меньше в 1000 раз 1 единицы класса тысяч и т. д.)

 

[1] В математике системой счисления называют набор знаков, правил операций и порядка записи этих знаков при образовании числа. Различают два типа систем счисления:

1. Непозиционная система, которая характеризуется тем, что каждому знаку независимо от формы записи числа приписывается одно вполне определенное значение (например, римская нумерация).

2. Позиционная система (например, десятичная система счисления), которая характеризуется следующими свойствами:

- Каждая цифра принимает различные значения в зависимости от ее положения в записи числа (позиционный принцип записи);

- Каждая цифра в зависимости от ее положения называется разрядной единицей; разрядные единицы следующие: единицы, десятки, сотни и т. д.

- 10 единиц одного разряда составляют одну единицу следующего разряда, т. е. соотношение разрядных единиц равно десяти (10 ед.= 1 дес.; 10 дес. = 1 сот. и т. д.)

- Начиная, справа налево и подряд каждые 3 разрядные единицы образуют разрядные классы (единиц, тысяч, миллионов и др.).

- Прибавление к девяти единицам еще одной единицы данного разряда дает единицу следующего, более высшего (старшего) разряда.

 

Свойства отрезка натурального ряда:

1. Натуральный ряд чисел начинается с единицы.

2. Каждое число имеет свое место. Каждое следующее число на единицу больше предыдущего; каждое предыдущее на единицу меньше последующего.

3. Все числа, стоящие до выделенного числа меньше его; все стоящие после – больше изученного числа.

4. Бесконечность натурального ряда чисел.

Цель и образовательные задачи изучения нумерации

Цель изучения нумерации – усвоение общих принципов, лежащих в основе десятичной системы счисления, устной и письменной нумерации.

Основные образовательные задачи изучения нумерации:

1.Сформировать систему знаний:

- о натуральном числе и числе «0»;

- о натуральной последовательности чисел;

- об устной и письменной нумерации;

2.Ознакомить с вычислительными приемами, основанными на знании нумерации.

При изучении данной темы у учащихся должны быть сформированы следующие умения:

1. читать любое число;

2. обозначать число письменно;

3. сравнивать любые числа разными способами;

4. заменять число суммой разрядных слагаемых;

5. дать характеристику любого числа.

У учащихся необходимо сформировать следующие знания и умения:

1. Выделить число из других понятий.

2. Правильно назвать число.

3. Знать способы образования числа (в результате счета; в результате измерения; в результате выполнения арифметических действий).

4. Знать способы обозначения чисел с помощью цифр.

5. Знать различные функции числа. (Количественная функция, функция порядка, измерительная функция.)





Читайте также:





Читайте также:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)