1 Стохастико - детерминированный характер социально-экономических явлений и
связи между ними.
2 Статистические методы моделирования связи
3 Непараметрические методы
Изучение статистической связи.
Изучение взаимосвязей на рынке товаров и услуг — важнейшая функция работников
коммерческих служб: менеджеров, коммерсантов, экономистов. Особую
актуальность это приобретает в условиях развивающейся рыночной экономики.
Изучение механизма рыночных связей, взаимодействия спроса и предложения, влияние объема и состава предложения товаров на объем и структуру товарооборота, формирование товарных запасов, издержек обращения, прибыли и других качественных показателей имеет первостепенное значение для прогнозирования конъюнктуры рынка, рациональной организации торговых процессов и решения многих вопросов успешного ведения бизнеса.
Статистика призвана изучать коммерческую деятельность с количественной стороны. Это осуществляется с помощью соответствующих приемов и методов статистики и математики.
Статистические показатели коммерческой деятельности могут состоять между собой в следующих основных видах связи: балансовой, компонентной, факторной и др.
Балансовая связь — характеризует зависимость между источниками
формирования ресурсов (средств) и их использованием.
— остаток товаров на начало отчетного периода;
— поступление товаров за период;
— выбытие товаров в изучаемом периоде;
— остаток товаров на конец отчетного периода.
Левая часть формулы характеризует предложение товаров
, а правая часть — использование товарных ресурсов .
Компонентные связи показателей коммерческой деятельности характеризуются тем, что изменение статистического показателя определяется изменением компонентов, входящих в этот показатель, как множители:
В статистике коммерческой деятельности компонентные связи используются в индексном методе. Например, индекс товарооборота в фактических ценах
представляет произведение двух компонентов — индекса товарооборота в
сопоставимых ценах и индекса цен , т.е.
.
Важное значение компонентной связи состоит в том, что она позволяет
определять величину одного из неизвестных компонентов:
или
Факторные связи характеризуются тем, что они проявляются в согласованной вариации изучаемых показателей. При этом одни показатели выступают как факторные, а другие — как результативные.
Факторные связи могут рассматриваться как функциональные и корреляционные.
При функциональной связи изменение результативного признака
всецело зависит от изменения факторного признака :
При корреляционной связи изменение результативного признака
не всецело зависит от факторного признака , а лишь частично, так как возможно влияние прочих факторов :
.
Примером корреляционной связи показателей коммерческой деятельности является зависимость сумм издержек обращения от объема товарооборота. В этой связи, помимо факторного признака — объема товарооборота
, на результативный признак (сумму издержек обращения ) влияют и другие факторы, в том числе и не учтенные . Поэтому корреляционные связи не являются полными (тесными) зависимостями.
Характерной особенностью корреляционных связей является то, что они
проявляются не в единичных случаях, а в массе.
При статистическом изучении корреляционной связи показателей коммерческой деятельности перед статистикой ставятся следующие основные задачи:
1) проверка положений экономической теории о возможности связи между
изучаемыми показателями и придание выявленной связи аналитической формы
зависимости;
2) установление количественных оценок тесноты связи, характеризующих силу влияния факторных признаков на результативные.
Для того, чтобы установить, есть ли зависимость между величинами, используются многообразные статистические методы, позволяющие определить, во-первых — какие связи; во-вторых — тесноту связи (в одном случае она сильная, устойчивая, в другом — слабая); в-третьих — форму связи (т.е. формулу, связывающую величину и ).
В процессе изучения связи надо учитывать, что мы используем математический аппарат, но всегда надо иметь теоретические обоснования той связи, которую пытаются показать.
Переходим к методам изучения статистической связи.
Наиболее простой способ иллюстрации зависимости между двумя величинами — построение таблиц, показывающих, как при изменении одной величины меняется другая.
Для того, чтобы ответить на эти вопросы, необходимо использовать специальные статистические методы. Среди них есть очень простые и менее точные, более сложные и более точные. Но все они имеют один и тот же смысл. Один из простых показателей тесноты корреляционной зависимости — показатель корреляции рангов. Разберем порядок вычисления этого показателя на примере.
Изучается товарооборот и суммы издержек обращения по ряду магазинов (в тыс.
руб.). Данные представлены таблицей 1.
№ магазина
| Товарооборот
| Издержки обращения
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Из таблицы видно, что с ростом товарооборота растут и издержки обращения.
График еще раз это подтверждает.

Но в ряде случаев увеличение товарооборота ведет и к уменьшению издержек обращения, поскольку, помимо двух названных величин, в реальном процессе торговли участвуют и другие факторы, которые в рассмотрение не включены и носят случайный характер. Рассмотрим критерий тесноты связи, названный показателем корреляции рангов. От величин абсолютных перейдем к рангам по такому правилу: самое меньшее значение — ранг 1, затем 2 и т.д. Если встречаются одинаковые значения, то каждое из них заменяется средним. Итак:
Товарооборот
| Издержки
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7,5
|
| 7,5
|
|
|
|
|
Построим разности между рангами и возведем их в квадрат.
1. Если ранги совпадают, то ясно, что сумма их квадратов равна 0.
Связь полная, прямая.
2. Ранги образуют обратную последовательность
1 10
2 9 В этом случае
3 8
. . Связь полная, обратная.
. .
. .
10 1
3. Среднее значение из двух крайних означает полное отсутствие связи:
4. Показатель корреляции рангов:
Показатель показывает, как отличается полученная при наблюдении сумма
квадратов разностей между рангами от случая отсутствия связи.
Проанализируем показатель корреляции рангов.
1. Связь полная и прямая, и
2. Связь полная и обратная, и
3. Все остальные значения лежат между -1 и +1.
Построим показатель корреляции рангов для нашего примера:
Товарооборот (ранг)
| Издержки (ранг)
|
|
|
|
| -3
|
|
|
|
|
|
|
| -2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7,5
| -0,5
| 0,25
|
| 7,5
| 0,5
| 0,25
|
|
|
|
|
|
|
|
| | | |
|
Полученный показатель свидетельствует о достаточно тесной связи между
товарооборотом и издержками.
Для определения тесноты корреляционной связи применяется коэффициент корреляции.
Коэффициент корреляции изменяется от -1 до +1 и показывает тесноту и
направление корреляционной связи.
Если отклонения по и по от среднего
совпадают и по знаку, и по величине, то это полная прямая связь, то
=+1.
Если полная обратная связь, то =-1.
Если связь отсутствует, то =0.
Наиболее удобной формулой для расчета коэффициента корреляции является:
(1)
Коэффициент корреляции можно рассчитать и по другой формуле:
(2), где
и
Пример.
Товаро-
борот(х)
| Издержки обращения (у)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Все необходимые данные для определения коэффициента корреляции есть в
таблице, их лишь остается подставить в необходимую формулу.
В ряде случаев возникает необходимость установления статистической связи между признаками, не имеющими количественного выражения.
Пример.
На предприятии работает группа станков. В силу организационно-технических причин, периодически возникают простои. Было проведено 133 наблюдения за работой станков на протяжении дня , при этом в 59 случаях были отмечены простои, соответственно в 74 случаях их не было. После рационализаторского предложения, направленного на уменьшение простоев, вновь было проведено наблюдение, но уже за 66 станками. При этом в 27 случаях были отмечены простои, в 39 — нет. В данном случае сопоставляются два признака, причем альтернативных.
1 признак — наличие или отсутствие рационального предложения;
2 признак — наличие или отсутствие простоев.
Ни тот, ни другой признак нельзя выразить числено. Поэтому введем следующие обозначения.
Первый признак (х): — наличие рационального предложения (1), отсутствие — (0).
Второй признак (у): — отсутствие простоев (1), наличие простоев (0).
Наши наблюдения представим таблицей:
|
|
|
|
|
|
|
|
|
|
|
| y
x
|
|
| |
Для центральной части таблицы введем специальные обозначения
коэффициент
корреляции (коэффициент ассоциации). Он так же меняется от -1 до +1 и для нашего примера равен:
Очень маленький коэффициент. Показывает, что связь между рациональным предложением и уменьшением числа простоев очень мала. Конечно, простои уменьшились, но не на столько эффективно, как бы этого хотелось.
|