Мегаобучалка Главная | О нас | Обратная связь

Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии




Современная биология основывается на тех достижени­ях, которые были сделаны в этой науке во второй половине

XIX века: создание Ч. Дарвином эволюционного учения,
основополагающие работы К. Бернара в области физиоло­
гии, важнейшие исследования Л. Пастера, Р. Коха и
И.И. Мечникова в области микробиологии и иммунологии,
работы И.М. Сеченова и И.И. Павлова в области выс­
шей нервной деятельности и, наконец, блестящие работы
Г. Менделя, хотя и не получившие известности до начала

XX века, но уже выполненные их выдающимся автором.
XX век явился продолжением не менее интенсивного

прогресса в биологии. В 1900 году голландским ученым-биологом X. де Фризом (1848-1935), немецким ученым-ботаником К.Э. Корренсом (1864-1933) и австрийским ученым Э. Чермак-Зейзенеггом (1871-1962) независимо друг от друга и почти одновременно вторично были откры­ты и стали всеобщим достоянием законы наследственнос­ти, установленные Менделем.

Развитие генетики после этого происходило быстро. Был принят принцип дискретности в явлениях наслед-


ственности, открытый еще Менделем; опыты по изучению закономерностей наследования потомками свойств и при­знаков родителей были значительно расширены. Было при­нято понятие «ген», введенное известным датским биоло­гом Вильгельмом Иогансоном (1857-1927) в 1909 году и означающее единицу наследственного материала, ответ­ственного за передачу по наследству определенного при­знака.

Утвердилось понятие хромосомы как структурного ядра клетки, содержащего дезоксирибонуклеиновую кислоту (ДНК) — высокомолекулярное соединение, носитель наслед­ственных признаков.

Дальнейшие исследования показали, что ген является определенной частью ДНК и действительно носителем только определенных наследуемых свойств, в то время как ДНК - носитель всей наследственной информации орга­низма.

Развитию генетики способствовали в большой мере ис­следования известного американского биолога, одного из основоположников этой науки, Томаса Ханта Моргана (1866-1945). Он сформулировал хромосомную теорию на­следственности. Большинство растительных и животных организмов являются диплоидными, т.е. их клетки (за ис­ключением половых) имеют наборы парных хромосом, од­нотипных хромосом от женского и мужского организмов. Хромосомная теория наследственности сделала более по­нятными явления расщепления в наследовании признаков.



Важным событием в развитии генетики стало откры­тие мутаций — возникающих внезапно изменений в на­следственной системе организмов и потому могущих при­вести к устойчивому изменению свойств гибридов, переда­ваемых и далее по наследству. Своим возникновением мутации обязаны либо случайным в развитии организма событиям (их обычно называют естественными или спон­танными мутациями), либо искусственно вызываемым воз­действиям (такие мутации часто именуют индуцированны­ми). Все виды живых организмов (как растительных, так и животных) способны мутировать, т. е. давать мутации. Это явление — внезапное возникновение новых, передаю­щихся по наследству свойств — известно в биологии дав­но. Однако систематическое изучение мутаций было начато голландским ученым Хуго де Фризом, установившим и


сам термин «мутации». Было обнаружено, что индуциро­ванные мутации могут возникать в результате радиоактив­ного облучения организмов, а также могут быть вызваны воздействием некоторых химических веществ.

Следует отметить первооткрывателей всего того, что связано с мутациями. Советский ученый-микробиолог Георгий Адамович Надсон (1867-1940) вместе со своими коллегами и учениками установил в 1925 году воздействие радиоизлучения на наследственную изменчивость у грибов. Известный американский генетик Герман Джозеф Меллер (1890-1967), работавший в течение 1933-1937 годов в СССР, обнаружил в 1927 году в опытах с дрозофилами сильное мутагенное действие рентгеновских лучей. В даль­нейшем было установлено, что не только рентгеновское, но и любое ионизированное облучение вызывает мутации.

Достижения генетики (и биологии в целом) за прошед­шее после выхода в свет книги Дарвина «Происхождение видов» время так значительны, что было бы удивительно, если бы все это никак не повлияло на дарвиновскую тео­рию эволюции. Два фактора: изменчивость и наследствен­ность, которым Дарвин придавал большое значение, полу­чили более глубокое толкование.

Итак, дальнейшее развитие биологии и входящей в нее составной частью генетики, во-первых, еще более укрепи­ло дарвиновскую теорию эволюции живого мира и, во-вто­рых, дало более глубокое толкование (соответствующее до­стигнутым успехам в биологии) понятиям изменчивости и наследственности, а следовательно, всему процессу эволю­ции живого мира. Более того, можно сказать, что успехи биологии выдвинули эту науку в ряды лидеров естество­знания, причем наиболее поразительные ее достижения связаны с изучением процессов, происходящих на молеку­лярном уровне.

Молекулярная биология

Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря технике физических методов анализа, скорость его резко возросла.

У. Астбери ввел в науку термин «молекулярная биоло­гия» и провел основополагающие исследования белков и ДНК. Хотя в 40-е годы почти повсеместно господствова-


ло мнение, что гены представляют собой особый тип белко­вых молекул, в 1944 году О. Звери, К. Маклеод и М. Мак-карти показали, что генетические функции в клетке выпол­няет не белок, а ДНК. Установление генетической роли нуклеиновых кислот имело решающее значение для даль­нейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибонуклеиновой кислоте).

Расшифровку молекулы ДНК произвели в 1953 году Ф.Крик (Англия) и Д.Уотсон (США). Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль.

Наряду с изучением нуклеиновых кислот и процессом синтеза белка в молекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков. Параллельно с расшифровкой аминокис­лотного состава белков проводились исследования их про­странственной структуры. Среди важнейших достижений этого направления следует назвать теорию спирали, разра­ботанную в 1951 году Э. Полингом и Р. Кори. Согласно этой теории, полипептидная цепь белка не является плос­кой, а свернута в спираль, характеристики которой были также определены.

Несмотря на молодость молекулярной биологии, успе­хи, достигнутые ею в этой области, ошеломляющи. За срав­нительно короткий срок были установлены природа гена и основные принципы его организации, воспроизведения и функционирования. Полностью расшифрован генетический код, выявлены и исследованы механизмы и главные пути образования белка в клетке. Полностью определена пер­вичная структура многих транспортных РНК. Установле­ны основные принципы организации разных субклеточных частиц, многих вирусов, и разгаданы пути их биогенеза в клетке.

Другое направление молекулярной генетики — иссле­дование мутации генов. Современный уровень знаний по­зволяет не только понять эти тонкие процессы, но и ис­пользовать их в своих целях. Разрабатываются методы генной инженерии, позволяющие внедрить в клетку желае­мую генетическую информацию. В 70-е годы появились методы выделения в чистом виде фрагментов ДНК с помо­щью электрофореза.


В 1981 году процесс выделения генов и получения из них различных цепей был автоматизирован. Генная инже­нерия в сочетании с микроэлектроникой предвещают воз­можности управлять живой материей почти так же, как неживой.

В последнее время в средствах массовой информации активно обсуждаются опыты по клонированию и связан­ные с этим нравственные, правовые и религиозные пробле­мы. Еще в 1943 году журнал «Сайенс» сообщил об успеш­ном оплодотворении яйцеклетки в «пробирке». Далее со­бытия развивались следующим образом.

1973 год — профессор Л. Шетлз из Колумбийского университета в Нью-Йорке заявил, что он готов произвес­ти на свет первого «бэби из пробирки», после чего после­довали категорические запреты Ватикана и пресвитериан­ской церкви США.

1978 год — рождение в Англии Луизы Браун, первого ребенка «из пробирки».

1997 год — 27 февраля «Нейчур» поместил на своей обложке — на фоне микрофотографии яйцеклетки — зна­менитую овечку Долли, родившуюся в институте Рослин в Эдинбурге.

1997 год — в самом конце декабря журнал «Сайенс»
сообщил о рождении шести овец, полученных по рослин-
скому методу. Три из них, в том числе и овечка Долли,
несли человеческий ген «фактора IX», или кровоостанав­
ливающего белка, который необходим людям, страдающим
гемофилией, то есть несвертываемостью крови.

1998 год — чикагский физик Сиди объявляет о созда­
нии лаборатории по клонированию людей: он утверждает,
что отбоя от клиентов у него не будет.

1998 год, начало марта — французские ученые объяви­ли о рождении клонированной телочки.

Все это открывает уникальные перспективы для чело­вечества.

Клонирование органов и тканей — это задача номер один в области трансплантологии, травматологии и в других областях медицины и биологии. При пересадке клониро­ванного органа не надо думать о подавлении реакции от­торжения и возможных последствиях в виде рака, развив­шегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные


аварии или какие-нибудь иные катастрофы, или для лю­дей, которым нужна радикальная помощь из-за заболева­ний пожилого возраста (изношенное сердце, больная пе­чень и т. д.).

Самый наглядный эффект клонирования — дать воз­можность бездетным людям иметь своих собственных де­тей. Миллионы семейных пар во всем мире страдают, бу­дучи обреченными оставаться без потомков.





Читайте также:





Читайте также:

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)