Релятивистская квантовая физика. Мир античастиц. Квантовая теория поляКвантовая механика, которая в первых работах Бора, Шредингера, Гейзенберга и других ученых являлась, в основном, теорией атомных спектров, получила за короткое время интенсивное развитие и была обобщена до теории, описывающей поведение микрообъектов в микромире. Физики стали делить окружающий нас мир на три уровня: мега-, макро- и микромир. Это оказалось возможным благодаря синтезу квантовой механики и специальной теории относительности, благодаря созданию релятивистской квантовой механики. В 1927 году английский физик Поль Дирак, рассматривая уравнение Шредингера, обратил внимание на его нерелятивистский характер. При этом квантовая механика описывает объекты микромира, и хотя к 1927 году их было известно только три: электрон, протон и фотон (даже нейтрон был экспериментально обнаружен только в 1932 году), было ясно, что движутся они со скоростями, весьма близкими к скорости света или равными ей, и более адекватное описание их поведения требует применения специальной теории относительности. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механики и теории относительности Эйнштейна, и получил формулу для энергии электрона, которой удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое — неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и соответствующих им античастицах, о мирах и антимирах. К этому же времени была разработана квантовая электродинамика. Суть ее состоит в том, что поле более не рассматривается как кон-тинуалистская непрерывная среда. Дирак применил к теории электромагнитного поля правила квантования, в результате чего получил дискретные значения поля. Обнаружение античастиц углубило представление о поле. Считалось, что электромагнитного поля нет, если нет квантов этого поля — фотонов. Следовательно, в этой области пространства должна быть пустота. Ведь специальная теория относительности «изгнала» из теории эфир, можно сказать, что победила точка зрения о вакууме, о пустоте. Но пуст ли вакуум, — вот вопрос, который вновь возник в связи с открытием Дирака. Сейчас хорошо известны факты, доказывающие, что вакуум пуст только в среднем. В нем постоянно рождается и исчезает огромное количество виртуальных частиц и античастиц. Даже если мы меряем заряд электрона, то, как оказалось, голый заряд электрона равнялся бы бесконечности. Мы же измеряем заряд электрона в «шубе» окружающих его виртуальных частиц. Собственно представление о вакууме как непрерывной активности содержащихся в нем виртуальных частиц содержится в принципе неопределенности Гейзенберга. Принцип неопределенности Гейзенберга имеет, кроме приведенного выше, еще и такое выражение: Квантовая теория поля является ядром всей современной физики, представляет собой общий подход ко всем известным типам взаимодействий. Одним из важнейших результатов ее является представление о вакууме, но уже не пустом, а насыщенным всевозможными флуктуациями всевозможных полей. Вакуум в квантовой теории поля определяется как наинизшее энергетическое состояние кван- тованного поля, энергия которого равна нулю только в среднем. Так что вакуум — это «Нечто» по имени «Ничто». Релятивистская квантовая теория поля, которая началась работами Дирака, Паули, Гейзенберга в конце 20-х годов нашего столетия, была продолжена в трудах Фейнма-на, Томонаги, Швингера и других ученых, давая все более полное представление о физической неразложимости мира, о несведении его к отдельным элементам. Здесь принцип целостности находит свое отражение при рассмотрении взаимодействия микрообъектов с определенным состоянием физического вакуума. Именно в этом взаимодействии все элементарные частицы обнаруживают свои свойства. Вакуум рассматривается как объект физического мира, выражающий как раз момент физической неразложимости его. Какова судьба понятия «вакуум» в современной физике XXI столетия? Почему наш мир состоит преимущественно из вещества, а «антивещество» долгое время оставалось скрытым от нашего взгляда? На эти и другие вопросы мы постараемся ответить в кратком очерке современного состояния физики элементарных частиц на рубеже третьего тысячелетия, приведенном в следующей главе. Заканчивая же разговор о квантовой физике, отметим, что результаты ее полностью изменили наши представления о мире, наш подход к структуре физических законов. В итоге, выработан новый тип научного мышления, называемый неклассическим, в котором есть место случайности, вероятности, целостности. Вопросы для самоконтроля 1. Напишите формулу Планка и объясните ее физиче 2. Какие физические эффекты являются эксперимен 3. В чем состоит гипотеза де Бройля? Чему равна длина 4. Опишите опыт с двумя щелями и поясните, как вы 5. Сформулируйте принцип неопределенности Гейзен 6. Расскажите о принципе дополнительности Бора. 7. В чем состоит принцип физической целостности 8. Какая физическая величина характеризует состояние 9. В чем заключается различие между динамическими
10. Какие новые представления о мире возникают в ре 11. Что представляет собой физический вакуум в кван Популярное: Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2766)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |