Числовые характеристики вариационных рядов
Выборочное среднее
где – варианты дискретного ряда или середины интервалов интервального ряда; – частоты вариант или интервалов; – частости вариант или интервалов.
Средняя отклонений вариантов от средней равна нулю:
Медианой (Md) вариационного ряда называется значение признака, приходящегося на середину ранжированного ряда наблюдений. Для дискретного вариационного ряда с нечетным числом членов медиана равна серединному варианту, а для ряда с четным числом членов – полусумме двух серединных вариантов. Для интервального вариационного ряда: Модой (Mo) вариационного ряда называется варианта, которой соответствует наибольшая частота. Для дискретного вариационного ряда мода находится по определению. Для интервального вариационного ряда:
Абсолютные показатели вариации Размах (R) – разность между наибольшим и наименьшим вариантами ряда: Среднее линейное отклонение (d) – средняя арифметическая абсолютных величин отклонений вариантов от их средней: Выборочная дисперсия ( ) – среднее арифметическое квадратов отклонений вариант от их выборочной средней: где – варианты дискретного ряда или середины интервалов интервального ряда. Для практических вычислений более удобной является формула: Среднее квадратическое отклонение (стандартное отклонение):
Относительные показатели вариации Коэффициент осцилляции: Относительное линейное отклонение: Коэффициент вариации:
Решение типовых задач
Теоремы сложения и умножения вероятностей 1) В урне 5 белых и 10 черных шаров. Из урны последовательно достают два шара. Найти вероятность того, что: а) шары будут одинакового цвета (шары возвращают в урну); б) шары будут разных цветов (шары не возвращают в урну); в) хотя бы один шар будет черным (шары не возвращают в урну). Решение а) Событие A – шары одинакового цвета. Рассмотрим события: A1 = бб – первый шар белый и второй шар белый. Аналогично: A2 = чч – первый шар черный и второй шар черный. Событие A произойдет, если достанут 2 белых или 2 черных шара: A = A1 + A2. – вероятность достать второй раз белый шар не изменилась, так как шар вернули в урну. Аналогично: По теореме сложения вероятностей для несовместных событий A1 и A2:
б) Событие B – шары разных цветов. Рассмотрим события: B1 = бч; B2 = чб. Ясно, что B = B1 + B2; – первый шар в урну не вернули, поэтому вероятность вычислена при условии, что первым достали белый шар.
в) Событие C – хотя бы один шар черный. Противоположное событие: – оба шара белых: . первый шар не вернули в урну, поэтому вероятность вычислили при условии, что первым достали белый шар. Ответ: а) ; б) ; в) .
2) В урне 5 белых и 10 черных шаров. Из урны последовательно достают все шары. Найти вероятность того, что: а) третьим по порядку будет вынут черный шар; б) из первых трех шаров хотя бы один шар будет черный. Решение а) Событие A – третьим по порядку будет черный шар. Рассмотрим события: A1 = ббч – первый шар белый, второй шар белый, третий шар черный. Аналогично: A2 = бчч; A3 = чбч; A4 = ччч. Событие A произойдет, если произойдет любое из событий A1, A2, A3, A4: A = A1 + A2 + A3 + A4. Так как из урны последовательно достают все шары, то шары в урну не возвращают и при вычислении вероятности события A1 = ббч рассчитываем условные вероятности того, что второй шар белый (при условии, что первый шар белый) и что третий шар черный (при условии, что первый шар белый и второй шар белый): Аналогично: По теореме сложения вероятностей для несовместных событий:
б) Пусть событие B – из первых трех шаров хотя бы один шар будет черным. Противоположное событие: – все три шара белые: .
Ответ: а) ; б) .
3) В урне 5 белых, 10 черных и 5 красных шаров. Три из них вынимают наугад. Найти вероятность того, что по крайней мере два из них будут одноцветными. Шары в урну не возвращают. Решение Событие A – по крайней мере два шара одноцветные. Противоположное событие: – все шара разного цвета. Рассмотрим события: A1 = бчк – первый шар белый, второй шар черный, третий шар красный. Аналогично: A2 = бкч; A3 = чбк; A4 = чкб; A5 = кбч; A6 = кчб. Событие A произойдет, если произойдет любое из событий A1, A2, A3, A4, A5, A6: A = A1 + A2 + A3 + A4 + A5 + A6. Так как шары в урну не возвращают, то при вычислении вероятности события A1 = бчк рассчитываем условные вероятности того, что второй шар черный (при условии, что первый шар белый) и что третий шар красный (при условии, что первый шар белый и второй шар черный): Аналогично: По теореме сложения вероятностей для несовместных событий: Ответ:
Популярное: Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1109)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |