Мегаобучалка Главная | О нас | Обратная связь  


Равномерная дискретизация




Спектр дискретного сигнала. Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий конечный и достаточно компактный фурье-образ S(f). Равномерная дискретизация непрерывного сигнала s(t) с частотой F (шаг Dt = 1/F) с математических позиций означает умножение функции s(t) на гребневую функцию ШDt(t) = d(t-kDt) – непрерывную последовательность импульсов Кронекера:

sDt(t) = s(t)Ч ШDt(t) = s(t) d(t-kDt) = s(kDt)d(t-kDt). (5.2.1)

С учетом известного преобразования Фурье гребневой функции

ШDt(t) Ы (1/T) d(f-nF) = F·ШF(f), (5.2.2)

фурье-образ дискретной функции sDt(t):

SF(f) = S(f) * FЧ ШF(f). (5.2.3)

Отсюда, для спектра дискретного сигнала имеем:

SF(f) = FЧ S(f) * d(f-nF) = F S(f-nF). (5.2.4)

Из выражения следует, что спектр дискретного сигнала представляет собой непрерывную периодическую функцию с периодом F, совпадающую (при определенных условиях конечности спектра непрерывного сигнала) с функцией FЧ S(f) непрерывного сигнала s(t) в пределах центрального периода от -fN до fN, где fN = 1/2Dt = F/2. Частоту fN (или для круговой частоты wN = p/Dt) называют частотой Найквиста. Центральный период функции SF(f) называют главным частотным диапазоном.

Интуитивно понятно, что если спектр главного частотного диапазона с точностью до постоянного множителя совпадает со спектром непрерывного сигнала, то по этому спектру может быть восстановлена не только форма дискретного сигнала, но и форма исходного непрерывного сигнала. При этом шаг дискретизации и соответствующее ему значение частоты Найквиста должны иметь определяющее значение.



Как правило, шаг дискретизации сигнала (шаг числовых массивов) условно принимают равным Dt = 1, при этом главный частотный диапазон занимает интервал -0.5 Ј f Ј 0.5, или, в шкале угловых частот, соответственно -p Ј w Ј p.

Физическая сущность формирования спектров дискретных сигналов достаточно проста. Наиболее наглядно это можно увидеть, если воспользоваться программой Mathcad (см. рис. 5.2.1).

Сначала представим себе непрерывный сигнал постоянной единичной амплитуды c(t) = const = 1 на произвольном интервале 0-Т, например, при Т=100. Начнем дискретизировать сигнал с равномерным шагом Dt=1. Вычислим спектр первого дискретного отсчета c0 = 1. При N=1 сигнал является импульсом Кронекера, а, соответственно, модуль спектра отсчета с0=1 представляет собой непрерывное частотное распределение |С(w)| = const в диапазоне от -Ґ до +Ґ (показан только участок от -6p до +6p с нормировкой на N для наглядности сравнения спектров). Все частоты сигнала имеют нулевую фазу и при сложении взаимно компенсируются во всех временных точках за исключением точки t=0, в которой амплитуды частот суммируются, создавая единичный отсчет с0.

Добавим к сигналу второй дискретный отсчет с1=1 (N=2). Если вычислить спектр только второго отсчета, то его модуль будет равен модулю первого отсчета (так как с10), но нулевые фазы гармоник этого спектра переместятся в точку t=1, т.е. относительно точки t=0 фазы гармоник второго отсчета изменятся на -wDt в соответствии с теоремой запаздывания преобразования Фурье. При сложении этих двух спектров первого и второго отсчета наблюдается интерференция частот и возникают пульсации частотного спектра с максимумами на частотах, кратных F=1/Dt или в угловых единицах 2p/Dt, где фазы спектров первого и второго отсчетов совпадают и равны нулю. Форма модуля результирующего спектра при N=2 приведена на рисунке.

 

Физический смысл интерференции частот остается тем же самым, если мы на произвольном интервале Т зададим произвольный сигнал, например – синусоиду u(t) Ы U(f), и выполним его дискретизацию, т.е. умножим сигнал на непрерывную последовательность импульсов Кронекера c(t)Ч u(t) ® u(t) d(t-kDt) = u(t)Ч ШDt(t). А так как каждый дискретный отсчет в этом случае имеет свою определенную амплитуду и, соответственно, свой уровень амплитуд гармоник своего спектра, то сложение частот дает более сложную картину интерференции с расщеплением спектра общего сигнала всех дискретных отсчетов на две зеркальных составляющих относительно кратных частот 2p/Dt.

 

 

Математически произведение двух функций во временной области отображается сверткой спектров этих функций в частотном представлении, т.е. сверткой спектра сигнала u(t) с частотной гребневой функцией спектра, порожденной временной гребневой функцией

Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Читайте также:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (612)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.018 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7