Случайные процессы и величиныГлава I. Элементы теории вероятностей.
Большинство разделов физики оперируют достаточно неболь-шим количеством объектов и связей между ними. При описании же процессов, происходящих в веществе, мы вынуждены рассматри-вать огромное количество объектов – молекул. Реальное вещество состоит из очень большого количества молекул. Например, в обыч-ном состоянии в 12 граммах изотопа углерода
Более того, для решения системы из N векторных уравнений необходимо будет записать эти уравнения в проекциях сил на 3 оси координат. Итого, для N молекул мы запишем 3N уравнений. Ре-шать такое количество уравнений совместно невозможно даже с применением современной вычислительной техники. Время реше-ния подобной системы уравнений во много раз превышает время, за которое рассматриваемая система молекул изменит свое состоя-ние. Отсюда видно, что для описания большого коллектива частиц невозможно пользоваться динамическим методом. Для описания таких коллективов прибегают к статистическому (вероятностному) и термодинамическому методам. Основной особенностью статистических методов является их вероятностный характер: рассматриваемый процесс представляется как процесс случайный, и выводятся некоторые закономерности для него. На практике часто приходится сталкиваться со случайными про-цессами. Случайность – это неустановленная закономерность. И в большинстве случаев бывает гораздо выгоднее статистически опи-сать случайный процесс, нежели определять закономерность полу-чения того или иного результата и учитывать всю совокупность параметров, приводящих к конкретному результату. Случайным процессом называется такой процесс, который при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по–иному. Например, к случайным процес-сам можно отнести бросание монеты или игральной кости. Каждый из этих процессов безусловно подчиняется хорошо известным фи-зическим законам. Вместе с тем, описать каждый конкретный слу-чай достаточно сложно – он зависит от очень большого количества условий. Поэтому процесс можно считать случайным. Каждому случайному процессу можно поставить в соответствие случайную величину, характеризующую этот процесс. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем заранее неизвестно, какое именно. Случайные величины разделяются на дискретные, возмож-ные значения которых могут быть заранее просчитаны, и непрерыв-ные, непрерывно заполняющие некоторый промежуток. В нашем примере с монетой случайная величина, описывающая процесс бросания, может принимать два значения: или Р(решетка) или О(орел). Случай, когда монета встает на ребро, происходит очень редко, поэтому учитывать его не будем. Для математического опи-сания случайной величины лучше присваивать ей численные значе-ния, скажем, 0 для решетки, и 1 для орла. В примере с игральной костью за случайную величину удобно принять количество очков, выпавших при бросании. Случаи, когда кость встает на ребро или на вершину, также не учитываются. Статистической вероятностью
Статистическая вероятность является величиной оценочной, приблизительной. Она рассчитывается по ограниченному количест-ву опытов. Если провести опыт с бросанием монеты 10 раз Вероятностью
Событием называется всякий факт, который в результате прове-дения опыта может произойти или может не произойти. Несовместными событиями называются события, которые не могут произойти одновременно в результате одного опыта. Напри-мер, невозможно выпадение и орла и решетки одновременно. Независимыми событиями называются такие события, возник-новение которых не зависит друг от друга. Для несовместных и независимых событий можно сформулиро-вать следующие свойства вероятностей: 1. Вероятность того, что произойдет хотя бы одно из событий
2. Вероятность того, что сразу после события
Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значе-ниями случайной величины и соответствующими им вероятностя-ми.
ФУНКЦИЯ И ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ
Для количественной характеристики распределения вероят-ностей удобней пользоваться не вероятностью того события, что случайная величина
Функция распределения случайной величины ¾ самая универ-сальная характеристика случайной величины, она существует как для дискретных случайных величин, так и для непрерывных. Функ-ция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения. Функции распределения обладают некоторыми об-щими свойствами: 1. Функция распределения 2. На минус бесконечности функция распределения равна нулю: 3. На плюс бесконечности функция распределения равна едини-це:
График функции распределения в общем случае может быть представлен как график неубывающей функции (рис.1), значения которой начинаются от 0 и доходят до 1, причем в отдельных точ-ках функция может иметь скачки (разрывы).
Пусть имеется непрерывная случайная величина
Вероятность попадания в указанный интервал рассчитывается как приращение функции распределения на этом участке. Рассмот-рим отношение этой вероятности к величине интервала, т.е. сред-нюю вероятность, приходящуюся на единицу длины на этом участ-ке, и будем приближать
Введем обозначение для производной от функции распределе-ния:
Функция ![]() ![]() ![]() Геометрически вероятность попадания величины Для дискретных величин аналогом графика распределения может служить гистограмма, отображающая величину прироста функции распределения (рис.3).
Плотность распределения обладает следующими свойствами: 1. Плотность распределения есть неотрицательная функция: 2. Интеграл в бесконечных пределах от плотности вероятности равен единице:
ПАРАМЕТРЫ ЗАКОНА РАСПРЕДЕЛЕНИЯ
Каждый закон распределения представляет собой некоторую функцию, и указание этой функции полностью описывает случай-ную величину с вероятностной точки зрения. Однако на практике часто нет необходимости характеризовать случайную величину полностью, достаточно указать отдельные числовые параметры, до некоторой степени характеризующие существенные черты распре-деления случайной величины, например, какое–то среднее значе-ние, какое–либо число, характеризующее степень разбросанности значений случайной величины относительно среднего. Основной характеристикой случайной величины является мате-матическое ожидание, которое иногда называют просто средним значением случайной величины. Рассмотрим дискретную случай-ную величину
Поскольку сумма вероятностей всех возможных значений слу-чайной величины равна единице (
Итак, математическим ожиданием называется сумма произведе-ний всех возможных значений случайной величины на вероятности этих значений. Для непрерывных случайных величин математи-ческое ожидание определяется по формуле:
Математическое ожидание случайной величины относится к так называемым начальным моментам случайной величины, характе-ризующим положение случайной величины. Начальным моментом
для дискретных случайных величин; и
для непрерывных случайных величин. Таким образом, математическое ожидание является начальным моментом первого порядка или первым начальным моментом. Оче-видна физическая интерпретация математического ожидания: если на оси Пользуясь определением математического ожидания, можно дать следующее определение начального момента: начальным мо-ментом
Другими важными характеристиками распределения случайной величины являются так называемые центральные моменты. Назовем отклонением (или флуктуацией)
Другое название флуктуации случайной величины Моменты центрированной случайной величины носят название центральных моментов. Они равносильны моментам относитель-но центра масс в механике. Таким образом, центральным моментом
Для дискретной случайной величины
а для непрерывной- интегралом:
Для любой случайной величины первый центральный момент равен нулю:
так как математическое ожидание центрированной случайной величины всегда равно нулю. Большое значение для характеристики распределения случайной величины имеет второй центральный момент, называемый диспер-сией
для дискретных случайных величин;
для непрерывных случайных величин. Дисперсия случайной величины характеризует рассеяние значе-ний случайной величины относительно математического ожидания. Механическая интерпретация второго центрального момента (дис-персии) – это момент инерции тела относительно центра масс. Для наглядной характеристики рассеивания случайной величи-ны удобней пользоваться величиной, размерность которой совпада-ет с размерностью самой случайной величины. Для этого из дис-персии извлекают квадратный корень, и полученная величина но-сит название среднего квадратичного отклонения случайной вели-чины
Для характеристики асимметрии распределения используют тре-тий центральный момент, он имеет размерность куба случайной ве-личины; чтобы получить безразмерную величину, его делят на куб среднего квадратичного отклонения
Полученная величина называется коэффициентом асимметрии или просто асимметрией. Четвертый центральный момент характеризует остро- или плос-ковершинность распределения. Соответствующий коэффициент на-зывается эксцессом и рассчитывается как
Число 3 вычитается потому, что для самого распространенного в природе нормального закона, который мы рассмотрим позже, от-ношение
ПРИМЕРЫ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ
Самым простым законом распределения является закон равномерного распределения, при котором все возможные значения случайной величины равновероятны. График функции распреде-ления при равномерном распределении представляет собой прямую линию (рис.4):
Основные характеристики равномерного распределения:
Наиболее часто встречающийся на практике закон распределе-ния – это нормальный закон распределения, который еще называют законом Гаусса. Главная особенность нормального закона, отлича-ющая его от других законов распределения, состоит в том, что нор-мальный закон является предельным законом, к которому прибли-жаются другие законы распределения при весьма часто встреча-ющихся типичных условиях. Функция плотности распределения нормального закона имеет вид:
Основной особенностью графика плотности распределения по нормальному закону является то, что кривая распределения имеет симметричный холмообразный вид (рис.5).
Максимуму функции, равному
На рис.6 показаны три нормальные кривые распределения при ![]() ![]()
Математическое ожидание и дисперсия случайной величины для нормального распределения в общем виде раcсчитываются доста-точно сложно, и их конкретные значения зависят от конкретного вида случайной величины; но можно выяснить соотношения между средним квадратичным отклонением и центальными моментами. Эти соотношения не зависят от конкретного распределения, и для всех случайных величин, подчиняющихся нормальному закону, оди-наковы. Для нормального закона выполняется следующее соот-ношение между центральными моментами:
Так как
Для четных моментов выполняются следующие соотношения:
отсюда имеем эксцесс для нормального закона
Глава II. Распределение Максвелла
Распределение Максвелла занимает особое место среди прочих законов распределения. Этот закон описывает скорости движения молекул газа, находящегося в термодинамическом равновесии. Распределение Максвелла является следствием нормального закона распределения. Распределение
где
Поскольку функция
Вероятность того, что проекция скорости
Интегрирование в бесконечных пределах не означает, что в газе есть молекулы с такими скоростями (скорость движения ограниче-на скоростью света). Молекул с очень большими скоростями доста-точно мало, и они не вносят никакого вклада в нормировочный ин-теграл. Это и позволяет записывать такие пределы интегрирования. Аналогичный вид имеют выражения для функций по осям Поскольку оси координат равноправны, как и равноправны проекции
Тогда для объемной функции распределения получаем (так как
Найдем вероятность или относи-тельное число молекул, модуль ско-рости которых заключен в интерва-ле Объем этого слоя равен произведению поверхности слоя и его толщины, т.е. Вероятность попадания в этот слой:
Искомая зависимость вероятности от модуля скорости моле-кулы:
Учитывая выражение для объемной плотности вероятности
Эта функция также нормирована на единицу:
Следует обратить внимание, что в показателе экспоненты стоит взятое со знаком минус отношение кинетической энергии молекулы Полученные Максвеллом распределения по скоростям не зави-сят ни от структуры молекул, ни от вида взаимодействия из друг с другом. Поэтому они применимы не только к газам, но и к другим агрегатным состояниям вещества, что мы и увидим в лабораторной работе №2. Вид функции
Характерные скорости
Полученные выражения для распределения по скоростям позво-ляют установить некоторые характеристики этого распределения. Это три скорости движения молекул газа: наиболее вероятная Наиболее вероятной скорости
или, опуская постоянные множители:
Данному уравнению удовлетворяют три значения скорости: 1. 2. 3. Значение
где Средняя скорость
Среднеквадратичная скорость
откуда
Поскольку функция распределения Максвелла несимметрична относительно наиболее вероятного значения, то и для трёх харак-терных скоростей значения различны. Вместе с тем наблюдается постоянное соотношение характерных скоростей:
Зависимость распределения от температуры
Подставив выражение для наиболее вероятной скорости
Отсюда видно, что при увеличении температуры (при постоян-ной массе молекул) или уменьшении массы молекул(при постоян-ной температуре) максимум функции
Популярное: Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (781)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |