РАБОТА 3. ОПТИМИЗАЦИЯ РЕАКТОРА ИДЕАЛЬНОГО ВЫТЕСНЕНИЯ НА ОСНОВЕ ПРИНЦИПА МАКСИМУМА
Цель работы: освоить принцип максимума, научиться использовать принцип максимума для решения задач оптимизации химико-технологических процессов. Задание: на основе принципа максимума разработать алгоритм решения задачи оптимизации реактора идеального вытеснения, составить блок-схему алгоритма, написать программу используя языки программирования. Задачи определения оптимальных процессов характеризуются двумя наиболее важными особенностями: 1) минимизируемый функционал зависит не только от фазовых координат Рис. 3.1. Управляющее воздействие 2) ограничения на фазовые координаты и управляющие воздействия выражаются в виде неравенств Это значит, что фазовые траектории и управления могут частично или полностью проходить по границе допустимой области. Физический смысл рассмотрения замкнутой и ограниченной области управления Каждую функцию Допустимым управлением условимся называть всякую кусочно-непрерывную функцию и непрерывную на концах отрезка Классическое необходимое условие экстремума функционала в общем случае неприменимо для задач оптимального управления при наличии ограничений. Задача с ограничениями, наложенными накоординаты и управления методами классического вариационного исчислениярешаются лишь в частных случаях. В реальных системах, где управление и фазовые переменные удовлетворяют ограничениям, мощным инструментом решения задачи оптимизации является метод, предложенный в 1956 г. Понтрягиным Л.С., Болтянским Б.Г., Гамкрелидзе Р.В., Мищенко Е.Ф., называемый принципом максимума[1,6]. Принцип максимума является необходимым условием оптимальности для нелинейных систем, а длялинейных – необходимым и достаточным. Из многих задач оптимального управления имеют существенное значение три задачи: задача максимального быстродействия, задача управления конечным состоянием и задача управления по минимуму интеграла. Задачи по минимуму времени, по минимуму интеграла и управления конечным состоянием являются частным случаем задачи минимизации по отношению к одной координате. Рассмотрим управление процессом n-го порядка
Необходимо определить управление, обеспечивающее минимум функционала
Введем новую переменную
Тогда задача отыскания минимума функционала (3.2) сводится к задаче отыскания минимума Задачи оптимального управления можно рассматривать как частные случаи более общей задачи отыскания максимума или минимума функционала
Читайте также: SUR LE COU-DE-PIED (сюр ле куде-пье, франц. — на щиколотке) - положение вытянутой ступни работающей ноги на щиколотке опорной ноги (спереди или сзади). Рекомендуемые страницы: Читайте также: Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1069)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |