Пределы применимости классической теории твердого тела
В качестве примера применения квантовой статистики рассмотрим внутреннюю энергию кристаллического твердого тела. Расположение атомов в узлах кристаллической решетки отвечает минимуму их потенциальной энергии. При смещении атомов из положения равновесия в любом направлении появляется сила, стремящаяся вернуть его в первоначальное положение, вследствие чего возникают колебания атомов. Колебание вдоль произвольного направления можно представить как наложение колебаний вдоль трех взаимно перпендикулярных направлений. Поэтому каждому атому в кристалле следует приписать три колебательные степени свободы. Как было ранее выяснено, на каждую колебательную степень свободы в среднем приходится энергия, равная двум половинкам kТ — одна в виде кинетической и одна в виде потенциальной энергии. Следовательно, на каждый атом приходится в среднем энергия, равная 3kT. Энергию моля вещества в кристаллическом состоянии можно найти, умножив среднюю энергию одной частицы на число частиц, размещенных в узлах кристаллической решетки. Последнее число совпадает с числом Авогадро NA только в случае химически простых веществ. В случае такого, например, вещества, как NaCl, число частиц будет равно 2NА, ибо в моле NaCl содержится NA атомов Na и NA атомов С1. Ограничившись рассмотрением химически простых веществ, образующих атомные или металлические кристаллы, для внутренней энергии моля вещества в кристаллическом состоянии можно написать выражение
Приращение внутренней энергии, соответствующее повышению температуры на один градус, равно теплоемкости при постоянном объеме. Следовательно,
Более того, теплоемкость кристаллов зависит от температуры, причем зависимость имеет характер, показанный на рис. 4.1. Вблизи абсолютного нуля теплоемкость всех тел пропорциональна T 3, и только при достаточно высокой, характерной для каждого вещества температуре начинает выполняться закон Дюлонга и Пти. У большинства тел это достигается уже при комнатной температуре, у алмаза же теплоемкость достигает значения 3R лишь при температуре порядка 1000°С. Таким образом, классическая теория теплоемкости кристаллов имеет границы своего применения, и при низких температурах необходимо квантовое рассмотрение. Применение квантовой теории позволило Эйнштейну уже в 1906 г. дать принципиальное объяснение падения теплоемкости кристаллов вблизи абсолютного нуля температуры. Эйнштейн рассматривал кристалл как совокупность N независимых гармонических осцилляторов, колеблющихся около положения равновесия с одной и той же частотой ω. В отличие от классического закона
в которой опущен член При высоких температурах формула (4.1) переходит в классическое выражение
Популярное: Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему стероиды повышают давление?: Основных причин три... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (951)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |