Пусть заданы векторы в прямоугольной системе координат
Скалярное произведение векторов.
Свойства скалярного произведения: 1) 2) 3) 4) 5) (m Если рассматривать векторы
Используя полученные равенства, получаем формулу для вычисления угла между векторами:
Пример. Найти (5 10 т.к. Пример. Найти угол между векторами
cosj = Пример. Найти скалярное произведение (3 15 + 12×36 = 240 – 336 + 432 = 672 – 336 = 336. Пример. Найти угол между векторами
Пример. При каком m векторы
Пример. Найти скалярное произведение векторов (
+ 27 + 51 + 135 + 72 + 252 = 547.
Векторное произведение векторов. Определение. Векторным произведениемвекторов 1) 2) вектор 3) Обозначается:
Свойства векторного произведения векторов: 1) 2) 3) (m 4) 5) Если заданы векторы
6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах Пример. Найти векторное произведение векторов
При использовании компьютерной версии “Курса высшей математики” можно запустить программу, которая может найти скалярное и векторное произведения двух векторов. Для запуска программы дважды щелкните на значке: В открывшемся окне программы введите координаты векторов и нажмите Enter. После получения скалярного произведения нажмите Enter еще раз – будет получено векторное произведение. Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4. Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3), С(0, 1, 0).
Пример. Доказать, что векторы
Пример. Найти площадь параллелограмма, построенного на векторах
Смешанное произведение векторов. Определение. Смешанным произведением векторов Обозначается Смешанное произведение
Свойствасмешанного произведения: 1)Смешанное произведение равно нулю, если: а) хоть один из векторов равен нулю; б) два из векторов коллинеарны; в) векторы компланарны. 2) 3) 4) 5) Объем треугольной пирамиды, образованной векторами 6)Если
Пример. Доказать, что точки А(5; 7; 2), B(3; 1; -1), C(9; 4; -4), D(1; 5; 0) лежат в одной плоскости. Найдем координаты векторов: Найдем смешанное произведение полученных векторов:
Таким образом, полученные выше векторы компланарны, следовательно точки A, B, C и D лежат в одной плоскости. Пример. Найти объем пирамиды и длину высоты, опущенной на грань BCD, если вершины имеют координаты A(0; 0; 1), B(2; 3; 5), C(6; 2; 3), D(3; 7; 2). Найдем координаты векторов: Объем пирамиды Для нахождения длины высоты пирамиды найдем сначала площадь основания BCD. Sосн = Т.к. V =
Уравнение поверхности в пространстве. Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.
Общее уравнение плоскости. Определение. Плоскостьюназывается поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0, где А, В, С – координаты вектора Возможны следующие частные случаи: А = 0 – плоскость параллельна оси Ох В = 0 – плоскость параллельна оси Оу С = 0 – плоскость параллельна оси Оz D = 0 – плоскость проходит через начало координат А = В = 0 – плоскость параллельна плоскости хОу А = С = 0 – плоскость параллельна плоскости хОz В = С = 0 – плоскость параллельна плоскости yOz А = D = 0 – плоскость проходит через ось Ох В = D = 0 – плоскость проходит через ось Оу С = D = 0 – плоскость проходит через ось Oz А = В = D = 0 – плоскость совпадает с плоскостью хОу А = С = D = 0 – плоскость совпадает с плоскостью xOz В = С = D = 0 – плоскость совпадает с плоскостью yOz
Уравнение плоскости, проходящей через три точки. Читайте также: Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1016)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |