Мегаобучалка Главная | О нас | Обратная связь


Новое время (XVI—XVII в.в.)



2016-01-26 1267 Обсуждений (0)
Новое время (XVI—XVII в.в.) 0.00 из 5.00 0 оценок




Развитие тригонометрии в Новое время стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях. Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник, Иоганн Кеплер, Франсуа Виет[4]. Коперник посвятил тригонометрии две главы в своём трактате «О вращении небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10"[6]. Кеплер опубликовал труд «Оптическая часть астрономии» (1604).

Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[6].

Термин «тригонометрия» как название математической дисциплины ввёл в употребление немецкий математик Б. Питискус, опубликовавший в 1595 году книгу «Тригонометрия, или краткий и ясный трактат о решении треугольников» (лат. Trigonometria: sive de solutione triangulorum tractatus brevis et perspicuus). К концу XVII века появились современные названия тригонометрических функций. Термин «синус» впервые употребил около 1145 года английский математик и арабист Роберт Честерский. Региомонтан в своей книге назвал косинус «синусом дополнения» (лат. sinus complementi), поскольку ; его последователи в XVII веке сократили это обозначение до co-sinus (Эдмунд Гунтер), а позднее — до cos (Уильям Отред). Названия тангенса и секанса предложил в 1583 году датский математик Томас Финке, а упомянутый выше Эдмунд Гунтер ввёл названия котангенса и косеканса. Термин «тригонометрические функции» впервые употребил в своей «Аналитической тригонометрии» (1770) Георг Симон Клюгель [9].

Томас Финке предложил оригинальное решение геодезической задачи: найти углы треугольника, если известна их сумма и отношение противолежащих сторон . Для решения Финке использовал формулу Региомонтана:

Виет в первой части своего «Математического канона» (1579) поместил разнообразные таблицы, в том числе тригонометрические, а во второй части дал обстоятельное и систематическое, хотя и без доказательств, изложение плоской и сферической тригонометрии. В 1593 году Виет подготовил расширенное издание этого капитального труда. «Несомненно, что самый интерес его к алгебре первоначально был вызван возможностью приложений к тригонометрии и астрономии»[10]. Другой важной заслугой Виета стало применение в тригонометрии разработанной им общей алгебраической символики; если ранее решение задачи понималось как геометрическое построение, то начиная с работ Виета приоритет начинает переходить к алгебраическим вычислениям[10]. Появление символики позволило записать в компактном и общем виде тригонометрические тождества — например, формулы для кратных углов[11]:

Надо оговориться, что сам Виет ещё дал эти формулы частично в словесном описании, но при этом ясно указал на связь коэффициентов формул с биномиальными коэффициентами и привёл таблицу их значений для небольших значений .

Из других достижений Виета: в работе «Дополнение к геометрии» Виет указал тригонометрический способ решения кубического уравнения для самого трудного в тот период — неприводимого — случая (стандартная формула требует умения работать с корнями из комплексных чисел). Виет дал первое в истории бесконечное произведение:

 

Кроме артиллерии и навигации, тригонометрия быстро развивалась и в таких классических областях её применения, как геодезия. Широкое применение тангенсов объяснялось, в частности, простотой измерения с их помощью высоты горы или здания (см. рисунок):

В 1615 году Снеллиус нашёл решение «задачи Снеллиуса-Потенота»: найти точку, из которой стороны данного (плоского) треугольника видны под заданными углами. Он открыл закон преломления света: для заданных исходной и преломляющей среды отношение синусов угла падения и угла преломления постоянно. Тем самым Снеллиус открыл дорогу новым применениям тригонометрических функций в оптике, а изобретение в эти же годы первых телескопов придало этому открытию особую важность.

Первый график синусоиды появился в книге Альбрехта Дюрера «Руководство к измерению циркулем и линейкой» (нем. Underweysung der Messung mit dem Zirkel und Richtscheyt, 1525 год). В 1630-х годах Жиль Роберваль, в ходе своих исследований циклоиды, независимо вычертил синусоиду, он же опубликовал формулу тангенса двойного угла. Джон Валлис в своей «Механике» (1670), опередив своё время, правильно указал знаки синуса во всех квадрантах и указал, что у синусоиды бесконечно много «оборотов». График тангенса для первого квадранта впервые начертил Джеймс Грегори (1668)[9].

Во второй половине XVII века началось стремительное развитие общей теории квадратур (то есть вычисления площади), завершившееся появлением в конце века математического анализа. Для тригонометрических функций важные результаты в начале этого периода получил Блез Паскаль (опубликованы в его книге «Письма А. Деттонвилля о некоторых его геометрических открытиях», 1659 год). В современной терминологии, Паскаль вычислил интегралы от натуральных степеней синуса и косинуса и некоторые связанные с ними, а также отметил, что . Работы в области тригонометрии проводили такие крупные математики XVII века, как Отред, Гюйгенс, Озанам, Валлис. Заметным процессом во второй половине XVII века стала постепенная алгебраизация тригонометрии, совершенствование и упрощение её символики (хотя до Эйлера символика была всё же гораздо более громоздка, чем современная).

После открытия математического анализа сначала Джеймс Грегори, а затем Исаак Ньютон получили разложение тригонометрических функций (а также обратных к ним) в бесконечные ряды. Ньютон посвятил проблемам геометрии и тригонометрии 10 задач в своей книге «Универсальная арифметика». Например, в задаче X требуется «решить треугольник», если известны одна его сторона, противолежащий угол и сумма двух других сторон. Предложенный Ньютоном метод решения представляет собой одну из формул Мольвейде [12].

Лейбниц строго доказал, что не может быть, вообще говоря, алгебраически выражен через , то есть, в современной терминологии, тригонометрические функции трансцендентны[12].

Важными открытиями в начале XVIII века стали:

— Открытие и широкое распространение радианной меры углов (Роджер Котс, 1714). Сам термин «радиан» появился позднее, его в 1873 году предложил английский инженер Джеймс Томсон.

— Тригонометрическое представление комплексного числа и формула Муавра.

— Начало использования (Ньютон и Грегори) полярной системы координат, связанной с декартовой тригонометрическими соотношениями; в общее употребление эти координаты ввёл Эйлер (1748).

В 1706 году швейцарский математик Якоб Герман опубликовал формулы для тангенса суммы и тангенса кратных углов, а Иоганн Ламберт в 1765 году нашёл чрезвычайно полезные формулы, выражающие разные тригонометрические функции через тангенс половинного угла. Исследуя гиперболические функции (1761), Ламберт показал, что их свойства аналогичны свойствам тригонометрических; причину этого ещё в 1707 году обнаружил Муавр: при замене вещественного аргумента на мнимый круг переходит в гиперболу, а тригонометрические функции — в соответствующие гиперболические.

Немецкий математик Фридрих Вильгельм фон Оппель в книге «Анализ треугольников» (1746) опубликовал в современной записи обе формулы Мольвейде.

В книге «Полигонометрия» (1789) Симон Люилье обобщил тригонометрические соотношения для треугольников, дав их аналоги для произвольных многоугольников, включая пространственные. В работах на эту тему Люилье привёл основную теорему полигонометрии: площадь каждой грани многогранника равна сумме произведений площадей остальных граней на косинусы углов, образуемых ими с первой гранью. Он рассмотрел способы «решения многоугольников» с сторонами при различных постановках задачи: заданы сторона и угла, или все углы и стороны, или все стороны и угла.

В 1798 году Лежандр доказал, что если размеры сферического треугольника малы по сравнению с радиусом сферы, то при решении тригонометрических задач можно применять формулы плоской тригонометрии, вычтя при этом из каждого угла треть сферического избытка [13].

Манера обозначать обратные тригонометрические функции с помощью приставки arc (от лат. arcus — дуга) появилась у австрийского математика Карла Шерфера (Karl Scherffer, 1716—1783) и закрепилась благодаря Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: , но они не прижились.

Современный вид тригонометрии придал Леонард Эйлер. В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному, и соответственно определил обратные функции. Если его предшественники понимали синус и прочие понятия геометрически, то есть как линии в круге или треугольнике, то после работ Эйлера и т. д. стали рассматриваться как безразмерные аналитические функции действительного и комплексного переменного. Для комплексного случая он установил связь тригонометрических функций с показательной функцией (формула Эйлера). Подход Эйлера с этих пор стал общепризнанным и вошёл в учебники.

Эйлер рассматривал как допустимые отрицательные углы и углы, большие 360°, что позволило определить тригонометрические функции на всей вещественной числовой прямой, а затем продолжить их на комплексную плоскость. Когда встал вопрос о распространении тригонометрических функций на тупые углы, знаки этих функций до Эйлера нередко выбирались ошибочно; многие математики считали, например, косинус и тангенс тупого угла положительными. Эйлер определил эти знаки для углов в разных координатных квадрантах, исходя из формул приведения.

Эйлер впервые представил разложение тригонометрических функций в бесконечные произведения (1734), откуда вывел ряды для их логарифмов.

В других трудах, в первую очередь «Основания сферической тригонометрии, выведенные из метода максимумов и минимумов» (1753) и «Всеобщая сферическая тригонометрия, кратко и ясно выведенная из первых оснований» (1779), Эйлер впервые дал полное систематическое изложение сферической тригонометрии на аналитическом основании, причём многие крупные результаты принадлежат самому Эйлеру.

В середине XVIII века разгорелся важнейший по своим последствиям «спор о струне». Эйлер в полемике с Даламбером предложил более общее определение функции, чем принималось ранее; в частности, функция может быть задана тригонометрическим рядом. В своих трудах Эйлер использовал несколько представлений алгебраических функций в виде ряда из кратных аргументов тригонометрических функций, например:

Общей теорией тригонометрических рядов Эйлер не занимался и сходимость полученных рядов не исследовал, но получил несколько важных результатов. В частности, он вывел разложения целых степеней синуса и косинуса.

Тригонометрия в России

В России первые сведения о тригонометрии были опубликованы в сборнике «Таблицы логарифмов, синусов и тангенсов к изучению мудролюбивых тщателей», опубликованном при участии Л. Ф. Магницкого в 1703 году. В 1714 году появилось содержательное руководство «Геометрия практика», первый русский учебник по тригонометрии, ориентированный на прикладные задачи артиллерии, навигации и геодезии[12]. Завершением периода освоения тригонометрических знаний в России можно считать фундаментальный учебник академика М. Е. Головина (ученика Эйлера) «Плоская и сферическая тригонометрия с алгебраическими доказательствами» (1789).

В конце XVIII века в Петербурге возникла авторитетная тригонометрическая школа (А. И. Лексель, Н. И. Фусс, Ф. И. Шуберт), которая внесла большой вклад в плоскую и сферическую тригонометрию.



2016-01-26 1267 Обсуждений (0)
Новое время (XVI—XVII в.в.) 0.00 из 5.00 0 оценок









Обсуждение в статье: Новое время (XVI—XVII в.в.)

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1267)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)