Мегаобучалка Главная | О нас | Обратная связь


Исследование формы гиперболы по ее уравнению



2016-01-26 877 Обсуждений (0)
Исследование формы гиперболы по ее уравнению 0.00 из 5.00 0 оценок




 

Установим форму гиперболы, пользуясь ее каноническим уравнением.

1. Уравнение (11.9) содержит х и у только в четных степенях. Следовательно, гипербола симметрична относительно осей Ох и Оу, а также относительно точки , которую называют центром гиперболы.

2. Найдем точки пересечения гиперболы с осями координат. Положив у = 0 в уравнении (11.9), находим две точки пересечения гиперболы с осью Ох: и . Положив х = 0 в (11.9), получаем , чего быть не может. Следовательно гипербола ось Оу не пересекает.

Точки и называются вершинами гиперболы, а отрезок действительной осью, отрезок действительной полуосью гиперболы.

Отрезок , соединяющий точки и называется мнимой осью, число мнимой полуосью. Прямоугольник со сторонами и называется основным прямоугольником гиперболы.

3. Из уравнения (11.9) следует, что уменьшаемое не меньше единицы, т.е. что или . Это означает, что точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и слева от прямой (левая ветвь гиперболы).

 

 

О
Рис. 54.

 

 


 

4. Из уравнения (11.9) гиперболы видно, что когда возрастает, то и возрастает. Это следует из того, что разность сохраняет постоянное значение, равное единице.

Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).

 

Асимптоты гиперболы

Прямая L называется асимптотой неограниченной кривой K, если расстояние d от точки M кривой до этой прямой стремится к нулю при неограниченном удалении точки M

 

М
М
М
М
М
L
d
d
d
Рис. 55.
вдоль кривой K от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой K.

Покажем, что гипербола имеет две асимптоты:

 

и . (11.11)

 

О
d
x
x
y
Рис. 56.

 

 


Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть те точки указанных линий, которые расположены в первой четверти.

 

 


Возьмем на прямой точку N, имеющий абсциссу х, что и точка на гиперболе (см. рис. 56), и найдем разность MN между ординатами прямой и ветви гиперболы:

 

Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель есть постоянная величина. Стало быть, длина отрезка MN стремится к нулю. Так как MN больше

расстояния d от точки M до прямой, то d и подавно стремится к нулю. Итак, прямые являются асимптотами гиперболы (11.9).

Рис. 57.
О

При построении гиперболы (11.9) целесообразно сначала построить основной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, – асимптоты гиперболы и отметить вершины и гиперболы.

 



2016-01-26 877 Обсуждений (0)
Исследование формы гиперболы по ее уравнению 0.00 из 5.00 0 оценок









Обсуждение в статье: Исследование формы гиперболы по ее уравнению

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (877)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)