Мегаобучалка Главная | О нас | Обратная связь


Лабораторная работа №6



2018-07-06 458 Обсуждений (0)
Лабораторная работа №6 0.00 из 5.00 0 оценок




ИЗОБРАЖЕНИЯ МАЛЫХ ОБЪЕКТОВ, ВЛИЯНИЕ ВОЛНОВОЙ ПРИРОДЫ СВЕТА НА ПАРАМЕТРЫ ОПТИЧЕСКИХ ПРИБОРОВ

Цель работы - ознакомление с принципом действия и возможностями применения оптических микроскопов в исследовательской и измерительной практике; получение навыков измерений геометрических размеров малых объектов, изучение влияния волновой природы света на параметры оптических приборов.

6.1. Объект испытаний

Фрагмент пленочной микросхемы. В данном образце элементы структуры представляют собой металлические пленки, нанесенные на поверхность стеклокристаллической подложки. На контактные площадки, предназначенные для соединения с внешними цепями, нанесен слой припоя.

Кремниевая пластина со структурами БИС (рис.6.1).Образец №2 представляет собой пластину кремния с кристаллами больших интегральных схем (БИС). Фотография одного из кристалла показана на рис.2.1. В пластине кремния формируются области с различным типом проводимости. Поверхность кремния покрыта тонким слоем окисла (стекла), на котором расположены токоведущие элементы из алюминия (серебристо-белого цвета). Толщина окисла над областями с различной проводимостью разная, поэтому эти области на изображении в микроскопе отличаются по цвету (интерференция в тонких пленках).


Рис.6.1. фрагмент кристалла микросхемы: а – схематическое изображение структуры; б- вид в оптическом микроскопе
а
б

 


6.2. Теоретические сведения

6.2.1. Оптическая схема микроскопа

Типичная оптическая схема светового микроскопа отраженного света приведена на рис.6.2.

Свет от источника 1 через конденсорную линзу 2 зеркалами 3, 6 через диафрагмы 4, 5 направляется на светоделительную пластину 8 и через объектив 15 попадает на объект 11. Отраженный от объекта свет через светоделительную пластину 8, линзу 14, призму 15 направляется в бинокулярную насадку 17 с окулярами 16. Микроскоп может иметь и простую окулярную насадку с одним окуляром.

Полевая диафрагма 10 позволяет ограничить поле зрения изображения объекта, размер апертурной диафрагмы 5 определяет апертурный угол.

I zUvOT8nMS7dVCg1x07VQUiguScxLSczJz0u1VapMLVayt+PlAgAAAP//AwBQSwMEFAAGAAgAAAAh AOQK7YTEAAAA3AAAAA8AAABkcnMvZG93bnJldi54bWxEj0FrwzAMhe+D/gejwm6r0zHKyOqWdjDW nsba5S5iLckay8F2muTfT4dCbxLv6b1P6+3oWnWlEBvPBpaLDBRx6W3DlYGf88fTK6iYkC22nsnA RBG2m9nDGnPrB/6m6ylVSkI45migTqnLtY5lTQ7jwnfEov364DDJGiptAw4S7lr9nGUr7bBhaaix o/eaysupdwY+DyEWfFzti/S3n479V7Z7GS7GPM7H3RuoRGO6m2/XByv4S8GXZ2QCvfkHAAD//wMA UEsBAi0AFAAGAAgAAAAhAASrOV4AAQAA5gEAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5 cGVzXS54bWxQSwECLQAUAAYACAAAACEACMMYpNQAAACTAQAACwAAAAAAAAAAAAAAAAAxAQAAX3Jl bHMvLnJlbHNQSwECLQAUAAYACAAAACEAMy8FnkEAAAA5AAAAEgAAAAAAAAAAAAAAAAAuAgAAZHJz L3BpY3R1cmV4bWwueG1sUEsBAi0AFAAGAAgAAAAhAOQK7YTEAAAA3AAAAA8AAAAAAAAAAAAAAAAA nwIAAGRycy9kb3ducmV2LnhtbFBLBQYAAAAABAAEAPcAAACQAwAAAAA= ">

Рис.6.2. Оптическая схема микроскопа отраженного света

6.2.2. Режимы работы микроскопа

Два способа освещения объекта позволяют реализовать два режима работы микроскопа – светлопольный и темнопольный. В светлопольном режиме структура объекта видна вследствие различной отражательной способности его элементов. Если малые частицы объекта имеют неправильную форму, рассеивающую падающий на них свет, то такие элементы плохо видны в отраженном свете. В этом случае применяют метод темного поля, при котором из поля зрения устраняются прямые лучи, прошедшие через объект (или отраженные от него) и в объектив попадают лишь дифрагированные (рассеянные объектом).

Для работы в темном поле в ход лучей включаются кольцевая диафрагма 12 и зеркало 13 и полностью открываются апертурная и полевая диафрагмы (см. рис.6.2). Вид кольцевой диафрагмы показан на рис.6.3а, на рис.6.3б показано прохождение параллельного пучка света через кольцевую диафрагму.

В этом случае лучи от источника света проходят через линзу 7 широким пучком. Затем центральная часть пучка срезается кольцевой диафрагмой 12, а краевые лучи пучка направляются кольцевым зеркалом 13, включаемым вместо отражателя 8 в зеркальный конденсор объектива 9 и далее на объект. Апертура объектива и зеркального конденсора рассчитаны так, что в объектив могут попасть только те лучи, которые рассеивается объектом, чем и достигается светлое изображение объекта на темном поле зрения. Внешний вид конденсора темного поля и ход лучей с темнопольном режиме показаны на рис. 6.4.

Рис.6.3. Прохождение света через кольцевую диафрагму: а – вид кольцевой диафрагмы; б- прохождение параллельного пучка света через кольцевую диафрагму.

L t1UKDXHTtVBSKC5JzEtJzMnPS7VVqkwtVrK34+UCAAAA//8DAFBLAwQUAAYACAAAACEAtsLOr8QA AADcAAAADwAAAGRycy9kb3ducmV2LnhtbERPS2vCQBC+C/6HZYReRDc1tJXoKqX0Id402uJtyI5J MDsbstsk/fduQfA2H99zluveVKKlxpWWFTxOIxDEmdUl5woO6cdkDsJ5ZI2VZVLwRw7Wq+FgiYm2 He+o3ftchBB2CSoovK8TKV1WkEE3tTVx4M62MegDbHKpG+xCuKnkLIqepcGSQ0OBNb0VlF32v0bB aZz/bF3/eezip7h+/2rTl2+dKvUw6l8XIDz1/i6+uTc6zI9n8P9MuECurgAAAP//AwBQSwECLQAU AAYACAAAACEA8PeKu/0AAADiAQAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht bFBLAQItABQABgAIAAAAIQAx3V9h0gAAAI8BAAALAAAAAAAAAAAAAAAAAC4BAABfcmVscy8ucmVs c1BLAQItABQABgAIAAAAIQAzLwWeQQAAADkAAAAQAAAAAAAAAAAAAAAAACkCAABkcnMvc2hhcGV4 bWwueG1sUEsBAi0AFAAGAAgAAAAhALbCzq/EAAAA3AAAAA8AAAAAAAAAAAAAAAAAmAIAAGRycy9k b3ducmV2LnhtbFBLBQYAAAAABAAEAPUAAACJAwAAAAA= " fillcolor="white [3201]" stroked="f" strokeweight=".5pt">

а
L t1UKDXHTtVBSKC5JzEtJzMnPS7VVqkwtVrK34+UCAAAA//8DAFBLAwQUAAYACAAAACEA2Y5rNMQA AADcAAAADwAAAGRycy9kb3ducmV2LnhtbERPTWvCQBC9F/oflil4KbqpwSqpq0jRKt5q1NLbkJ0m wexsyG6T+O9dodDbPN7nzJe9qURLjSstK3gZRSCIM6tLzhUc081wBsJ5ZI2VZVJwJQfLxePDHBNt O/6k9uBzEULYJaig8L5OpHRZQQbdyNbEgfuxjUEfYJNL3WAXwk0lx1H0Kg2WHBoKrOm9oOxy+DUK vp/zr73rP05dPInr9bZNp2edKjV46ldvIDz1/l/8597pMD+O4f5MuEAubgAAAP//AwBQSwECLQAU AAYACAAAACEA8PeKu/0AAADiAQAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht bFBLAQItABQABgAIAAAAIQAx3V9h0gAAAI8BAAALAAAAAAAAAAAAAAAAAC4BAABfcmVscy8ucmVs c1BLAQItABQABgAIAAAAIQAzLwWeQQAAADkAAAAQAAAAAAAAAAAAAAAAACkCAABkcnMvc2hhcGV4 bWwueG1sUEsBAi0AFAAGAAgAAAAhANmOazTEAAAA3AAAAA8AAAAAAAAAAAAAAAAAmAIAAGRycy9k b3ducmV2LnhtbFBLBQYAAAAABAAEAPUAAACJAwAAAAA= " fillcolor="white [3201]" stroked="f" strokeweight=".5pt">
б


а
б
Рис. 6.4. Метод тёмного поля в отражённом свете: а – ход лучей: 1 - препарат; 2 - объектив; 3 - эпи-конденсор; 4 - кольцевое зеркало; б – вид конденсора

6.3. Оборудование и приборы для выполнения ЛР

· Микроскоп отраженного света «Вертивал»

· Объект микрометр отраженного света ОМ

· Окуляр микрометр

Микроскоп «Вертивал» предназначен для наблюдения непрозрачных объектов в отраженном падающем свете в светлом и темном поле для работы в микроэлектронной промышленности. Увеличение микроскопа составляет 63-600 крат в зависимости от применяемых объективов и окуляров. Основные узлы конструкции микроскопа обозначены непосредственно на корпусе «Вертивал» (с правой стороны). Фокусировка осуществляется перемещением предметного столика по вертикали двумя концентрически расположенными рукоятками грубой и точной фокусировки, которые находятся справа и слева на штативе. Для работы предоставлены 2 сменные объектива, которые устанавливаются с помощью соединения «ласточкиного хвоста». Объективы имеют различные параметры - увеличение и апертуру, значения которых указываются на корпусе объектива. Предметный столик имеет механизм координатного перемещения объекта. Перемещение объекта осуществляется с помощью рукояток, расположенных под предметным столиком.

6.4. Порядок выполнения ЛР

Лабораторная работа выполняется в следующей последовательности.

1. Положить на предметный столик микроскопа фрагмент пленочной микросхемы (образец №1). Включить осветитель. Установить объектив с цифрой 1(с минимальным увеличением).

2. С помощью рукояток фокусировки настроить изображение объекта на резкость (Внимание! Следите чтобы поверхность образца не касалась объектива!).

3. Перемещая образец в двух взаимно перпендикулярных направлениях внимательно рассмотреть элементы структуры. Изменяя размеры диафрагм с помощью соответствующих органов управления на микроскопе исследовать влияние диафрагм на получаемое изображение объекта. Наиболее четко влияние апертурной диафрагмы можно наблюдать на изображении контактных площадок. Зафиксировать свои наблюдения в отчете.

4. Повторить п.п.3, .4 при большем увеличении, установив объектив №2.

5. Сменить образец. Повторить п.п.2,3.

6. Рассмотреть изображение объекта №2 в режимах темного и светлого поля. Обратить внимание на изображение в темном поле структуры алюминия и поверхности пластины. Зафиксировать свои наблюдения в журнале. Снять с объектива №2 конденсор темного поля, для чего держа левой рукой соединение «ласточкино гнездо» правой отвернуть конденсор против часовой стрелки. Рассмотреть устройство конденсора, зарисовать его сечение. Установить конденсор на место.

7. Провести измерение элементов объекта (элементы предлагаются преподавателем) с помощью окулярной шкалы.

Примечание. Для расположения шкалы объект микрометра в центре поля зрения использовать объектив №1. Измерения проводить с объективом №2.

 



2018-07-06 458 Обсуждений (0)
Лабораторная работа №6 0.00 из 5.00 0 оценок









Обсуждение в статье: Лабораторная работа №6

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (458)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)