Мегаобучалка Главная | О нас | Обратная связь


Математическое моделирование



2019-07-03 178 Обсуждений (0)
Математическое моделирование 0.00 из 5.00 0 оценок




Задачей математического моделирования является получение теоретических зависимостей выходной величины датчика (изменение частоты поверхностно-акустической волны) от входной величины (изменение концентрации необходимого газа) и получение изменения выходной величины в динамике (зависимость частоты от времени при скачкообразном изменении концентрации).

Изменение резонансной частоты, обусловленное наличием покрытия на поверхности распространения поверхностно-акустической волны, описывается следующим соотношением [2]:

,

где  - сдвиг резонансной частоты за счет изменения чувствительным покрытием скорости поверхностно-акустической волны,

 и  характеристики пьезоэлектрического материала,

 - начальная резонансная частота,

h - толщина чувствительного покрытия,

 - его плотность.

Не трудно заметить, что произведение  - представляет собой массу покрытия на единицу площади.

где m – масса покрытия;

s – площадь покрытия.

Таким образом, изменение частоты поверхностно-акустической волны зависит в первую очередь от двух факторов - массы единицы площади пленки и механических свойств пьезоэлектрической подложки.

Скорость изменения величины адсорбции со временем описывается следующим уравнением [21]:

где a – содержание адсорбируемого вещества – масса адсорбируемого вещества к единице объема адсорбента ;

by – коэффициент массоотдачи;

 - концентрации адсорбируемого вещества в парогазовой смеси инертного газа (входной параметр) .

 - концентрация адсорбируемого вещества в парогазовой смеси, равновесная поглощенному единицей объема количеству вещества . Определяется по изотерме адсорбции.

Коэффициент массоотдачи определяется по следующему уравнению[21]:

где Nu – диффузионный критерий Нуссельта;

d – средний размер частиц адсорбента ;

D – коэффициент диффузии вещества в газе .

Значение диффузионного критерия Нуссельта для ориентировочных расчетов коэффициента массоотдачи определяется по критериальному уравнению [20]:

где Re – критерий Рейнольдса.

Для определения критерия Рейнольдса воспользуемся следующей формулой [20]:

где w – скорость потока на свободном сечении ;

 - кинематический коэффициент вязкости.

Кинематический коэффициент вязкости можно определить, пользуясь следующим соотношением [20]:

где  - динамический коэффициент вязкости газа ;

 - плотность газа .

Для определения  - концентрации адсорбируемого вещества в парогазовой смеси, равновесной поглощенному единицей объема количеству вещества воспользуемся изотермой адсорбции. Ввиду отсутствия необходимых табличных данных, описывающих как чувствительное полимерное покрытие, а как следствие, и отсутствие какого либо конкретного определяемого компонента, данная математическая модель ставит себе целью получение качественных характеристик описываемого ПАВ сенсора. Таким образом, за искомую изотерму адсорбции принимаем изотерму адсорбции бензола [20]. График данной изотермы приведен ниже.


 


В качестве определяемого компонента воздушной смеси принят аммиак.

Зависимость концентрации от парциального давления компонента выражается следующей формулой [20];

где p – парциальное давление компонента в газовой смеси;

R – универсальная газовая постоянная;

Т – абсолютная температура.

Подставляя числовые значения всех вышеперечисленных переменных в уравнение скорости адсорбции, а величину адсорбции в уравнение изменения частоты поверхностно-акустической волны и добавив к этому начальные и граничные условия получаем искомые зависимости величины адсорбции от времени и изменение частоты от времени.

Как видно из приведенных ниже графиков, время реакции сенсора на скачкообразное изменение концентрации определяемого компонента составляет порядка 10-5 сек.

 

 

Таким образом, в будущих исследованиях инерционностью процессов, происходящих в самом датчике можно пренебречь. А основное время процесса будет состоять из времени определения частоты поверхностно-акустической волны, времени подвода газа необходимой концентрации и пр. Таким образом, получаем еще одно подтверждение необходимости дальнейшего повышения автоматизации измерительной установки.

Для математического получения градуировочной характеристики ПАВ датчика воспользуемся уравнением [20]:

И подставив полученное тем самым значение величины адсорбции в уравнение зависимости изменения частоты поверхностно-акустической волны, получим градуировочный график.

 

Как видно из этого графика, зависимость изменения частоты поверхностно-акустической волны от концентрации – величина линейная. Таким образом получаем еще одно подтверждение перспективности использования поверхностно-акустических датчиков в качестве газовых сенсоров низких концентраций.




2019-07-03 178 Обсуждений (0)
Математическое моделирование 0.00 из 5.00 0 оценок









Обсуждение в статье: Математическое моделирование

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (178)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)