Мегаобучалка Главная | О нас | Обратная связь


Потенциометрические датчики




Потенциометрический датчик представляет собой пере­менное электрическое сопротивление, величина выходного напряжения которого зависит от положения токосъемного контакта.

Потенциометрические датчики предназначены для пре­образования линейных и угловых перемещений в электри­ческий сигнал, а также для воспроиз­ведения простейших функциональных зависимостей в автоматических и вы­числительных устройствах непрерыв­ного типа.

В потенциометрах непрерывной намотки переменным сопротивлением служит намотанная на каркас в один ряд тонкая проволока, по зачищенной поверхности которой скользит токосъемник. Сопротивление таких потенциомет­ров лежит в пределах от нескольких десятков ом до десят­ков килоом. Таким образом, потенциометр непрерывной намотки состоит из каркаса, обмотки и токосъемника (рис. 3.4).

Каркас выполняется из материала, обладающего изоля­ционными свойствами, и имеет форму стержня, кольца или изогнутой по дуге пластинки. В качестве изоляцион­ного материала используют гетинакс, текстолит, керамику или металл, покрытый непроводящим слоем окисла. Об­мотку изготавливают из эмалированной проволоки, диа­метр которой определяет точность потенциометра. Датчики высокого класса точности наматываются проволокой диаметром 0,03…0,1 мм, датчики низкого класса — 0,1…0,4мм. В качестве обмоточного провода применяют константан, манганин, фехраль и сплавы на основе благородных метал­лов. Обмотка укладывается на каркас равномерно, по­скольку это также влияет на точность работы датчика. Токосъемник (щетка) выполняется из материала несколько мягче, чем материал обмоточного провода, во избежание перетирания витков при длительной работе. Движок имеет форму изогнутой упругой пластины для создания контакт­ного давления, которое колеблется от 0,5 г до 15 г.

 

В зависимости от характера движения ползунка потен­циометры подразделяются на датчики линейного и угло­вого перемещения. Щетка датчика линейных перемещений совершает прямолинейное поступательное движение, а щетка датчика углового перемещения — круговое движе­ние (рис. 3.4).




По конструкции реохорда (каркас с намотанной на нем проволокой) различают два типа потенциометрических преобразователей: линейные и функцио­нальные.

Линейные потенциометрические преобразователи имеют по­стоянные сечение каркаса, диаметр проволоки и шаг намотки.

Напряжение питания и длина намотки являются постоянными величинами, поэтому выходные напряжения прямо пропорцио­нальны значению перемещения подвижного контакта.

Функциональные потенциометрические преобразователи обла­дают нелинейной характеристикой, что обеспечивается намоткой проволоки на каркасы с переменным сечением. Такой преобра­зователь представляет собой как бы несколько включенных по­следовательно линейных преобразователей. Нелинейность харак­теристики может быть достигнута также путем шунтирования резисторами отдельных участков намотки линейных потенцио­метрических преобразователей. Если у линейного потенциометрического преобразователя сделать отвод от середины обмотки, то он будет характеризовать наряду со значением перемещения движка и его направление.

Потенциометрические преобразователи могут включаться по схеме реостата (рис. 3.5, а и б) или потенциометра (рис. 3.5, в) (делителя напряжения). В зависимости от схемы включения перемещение подвижного контакта преобразуется в изменение тока (при последовательном соединении) или напряжения (при включении по схеме делителя). Первая схема применяется довольно редко, так как она не обеспечивает достаточной точности преобразова­ния, на величину которой оказывают влияние сопротивление соединительных проводов и переходного сопротивления между контактом и обмоткой реохорда.

Потенциометрические преобразователи выполняют с 20 %-ной или 100 %-ной зоной пропорциональности. Последние получили большее распространение, так как они охватывают всю шкалу измерительного прибора.

К преимуществам потенциометрических датчиков мож­но отнести: 1) простоту конструкции, малые габариты и вес; 2) воз­можность получения линейных статических характеристик с высокой точностью; 3) стабильность характеристик; 4) возможность работы на переменном и постоянном токе.

Недостатками этих датчиков следует считать: 1) наличие скользящего контакта, который может стать причиной отказов вследствие окисления контактной до­рожки, перетирания витков или отгибания ползунка; 2) погрешность в работе за счет нагрузки; 3) сравнительно небольшой коэффициент преобразования и высокий порог чувствительности; 4) наличие шумов; 5) подверженность электроэррозии под действием импульсных разрядов.

Из сопоставления видно, что с течением времени следует ожидать постепенную замену потенциометрических датчи­ков более совершенными бесконтактными датчиками.

 

Индуктивные датчики

Индуктивные датчики применяют для преоб­разования малых линейных или угловых перемещений в электри­ческие сигналы. Принцип их действия основан на зависимости индуктивного сопротивления катушки от изменения зазора вмагнитопроводе, от перемещения магнитопровода в катушке или от изменения площади зазора.


Индуктивный преобразователь датчика с подвижным якорем (изме­няющимся зазором) представляет собой катушку индуктивности 3 с магнитопроводом 2 и подвижным якорем 1 (рис. 3.6, а). Катушка индуктивности с магнитопроводом, называемая статором, закреп­ляется неподвижно, а якорь механически соединяется с подвиж­ной частью системы измерения, перемещение которой необхо­димо преобразовать в электрический сигнал. Перемещение якоря изменяет воздушный зазор δ (входная величина преобразователя), вызывает изменение индуктивного сопротивления катушки и, как следствие этого, выходной величины тока I при постоянном напряжении U 0 .

Чувствительность индуктивных преобразователей с изменяю­щимся воздушным зазором уменьшается с увеличением зазора δ, поэтому их используют для измерения и контроля очень малых перемещений (до 2 мм). В таком диапазоне рабочих перемещений их чувствительность не превышает 2 мкм.

Индуктивные преобразователи с перемещающимся магнито­проводом (рис. 3.6, б) способны измерять большие перемещения (до 50мм).

У индуктивных преобразователей с изменяющейся площадью воздушного зазора (рис. 3.6, в) статическая характеристика ли­нейна только на определенном участке. Линейность нарушается, когда активное сопротивление становится сравнимым с индук­тивным. Диапазоны перемещения якоря больше (до 8 мм), чем у преобразователей с изменяющимся воздушным зазором, однако чувствительность ниже.

Все перечисленные выше виды индуктивных преобразователей обладают высокой надежностью, имеют практически неограни­ченный срок службы и большую мощность выходного сигнала (до нескольких ватт). К недостаткам можно отнести нереверсив­ность статической характеристики, небольшой диапазон переме­щения якоря, наличие тока холостого хода и влияние колебаний амплитуды и частоты напряжения питания. Эти недостатки прак­тически полностью отсутствуют у дифференциальных индуктив­ных преобразователей.

Дифференциальный индуктивный преобразователь (рис. 3.6, г) имеет два статора 2 с катушками индуктивности 3 и один подвиж­ный якорь 1. При отклонении якоря от среднего положения происходит изменение индуктивного сопротивления обеих кату­шек и на выходе преобразователя появляется напряжение U н. Катушки индуктивности включаются либо в дифференциальную измерительную схему, либо работают как смежные плечи мостовой измери­тельной схемы.

Дифференциальные индуктивные преобразователи по сравне­нию с ранее рассмотренными конструкциями обладают более вы­сокими точностью и чувствительностью. Их статическая харак­теристика линейна и реверсивна. Поэтому они получили наи­большее распространение.

Трансформаторные преобразователи являются разновидностью индуктивных. Они представляют собой трансформаторы с пере- менным коэффициентом трансформации за счет изменения коэффи­циента взаимоиндукции между обмотками. Трансформатор­ные преобразователи применяют для преобразования небольших линейных и угловых перемещений в электрический сигнал (напря­жение переменного тока).


Первичная обмотка 2 (рис. 3.7) дифференциального трансформа­торного преобразователя с угловым перемещением якоря намо­тана на центральном стержне 1 магнитопровода, а две совершенно одинаковые вторичные обмотки 3 располагаются на крайних стержнях. Они соединены последовательно и имеют встречную намотку. При симметричном положении якоря 4 по отношению к стержню 1 во вторичных обмотках будут индуцироваться одина­ковые по значению и противоположные по фазе ЭДС, а напряже­ние на выходе преобразователя будет равно нулю. При повороте якоря, механически связанного с подвижной частью системы измерения, изменяется значение магнитных потоков и в соответ­ствии с этим значение ЭДС, т. е. на выходе появляется напряже­ние, амплитуда которого равна разности амплитуд ЭДС вторич­ных обмоток. Статическая характеристика рассмотренного преоб­разователя линейна и реверсивна. Реверсивность означает изме­нение в знаке выходного сигнала при изменении знака входного сигнала. Чувствительность преобразователя в 2 раза выше чув­ствительности обычных индуктивных преобразователей.

Интересна конструкция ферродинамического преобразователя, предназначенного для преобразования угловых перемещений в электрические сигналы.

Ферродинамический преобразователь (рис. 3.8) имеет магнито-провод, состоящий из шихтованного ярма 1 с полюсными наконечниками 2 и сердечника 3. На сердечнике 3 укреплены агатовые подпятники (на схеме не показаны), в которых на кернах установлена поворотная рамка 4, механически соединенная с подвижной частью системы измерения. Концы обмотки подвижной рамки подсоединяются с помощью спиральных пружин и проводов. Принцип работы преобразователя заключается в следующем. При подаче переменного тока на обмотку возбуждения 5 в магнитопроводе возникает магнитный поток. Если рамка 4 расположена по ней­трали ММ, то значение наведенной ЭДС равно нулю. При пово­роте рамки на некоторый угол α в ней индуцируется ЭДС, вели­чина которой пропорциональна углу поворота. Рабочий угол рамки от нейтрали составляет 40°. В зависимости от типа преобра­зователя напряжение на выходе рамки изменяется от —1 до +1 В или от 0 до 2 В.

Высокочастотные индуктивные преобразователи позволяют измерить толщину фольги металлов, толщину гальванических покрытий, разностенность металлических труб и т. д. Принцип их действия основан на изменении индуктивности обмотки при воз­никновении вихревых токов в проводящем теле, расположенном вблизи этой обмотки.

В таких преобразователях используется так называемый по­верхностный эффект, т. е. затухание вихревых токов по мере проникновения их в глубь проводящей среды, обусловленных переменным магнитным полем; при этом разность токов возбужда­ющего поля и поля вихревых токов уменьшается.

 

Емкостные датчики

Основу этих датчиков составляют емкостные преобразователи, которые преобразуют неэлектриче­ские величины (перемещение, уровень жидкости, влажность, уси­лие и т. д.) в изменение электрической емкости. Емкостной преоб­разователь является частью регулирующего или измерительного устройства с чувствительным элементом, выполненного в виде конденсатора и реагирующего на изменение измеряемого пара­метра технологического процесса. Чувствительный элемент ем­костного преобразователя представляет собой плоский или ци­линдрический конденсатор, у которого при воздействии изме­ряемого параметра изменяется расстояние между пластинами, площадь пластин или диэлектрическая проницаемость среды ме­жду обкладками. Емкость конденсатора C возрастает с увеличе­нием активной площади F и диэлектрической проницаемости ξ (для воды ξ =81; для воздуха ξ = 1; для формовочной смеси ξ = 1 ... 4) и уменьшается с увеличением расстояния между пластинами X, т. е. C = ξ0·ξ·F / X , где ξ0 — диэлектрическая про­ницаемость вакуума, ф/м. Учитывая влияние перечисленных фак­торов на размеры чувствительного элемента, различают три типа емкостных преобразователей: с переменным расстоянием между пластинами, с изменяемой площадью пластин и изменяемой ди­электрической проницаемостью среды. Перечисленные параметры емкостных преобразователей являются входными величинами, а выходной величиной будет емкость конденсатора.

 

Емкостные преобразователи с переменным расстоянием между пластинами (рис. 3.9, а) как правило конструктивно выполняют в виде плоского конденсатора, состоящего из двух или более пластин, одна из которых закреплена, а другая механически свя­зана с подвижной частью системы измерения. Емкостные преоб­разователи этого типа применяют для измерения толщины изде­лий, а также используют для измерения давления, усилия или вибрации.

Емкостные преобразователи с изменяемой площадью пластин выполняют как цилиндрическими (рис. 3.9, б), так и плоскими (рис. 3.9, в).

Цилиндрический емкостной преобразователь (рис. 3.9, б) пред­ставляет собой два цилиндра разного диаметра, помещаемые один в другой. Емкость конденсатора зависит от осевого перемеще­ния δ внутреннего цилиндра. Преобразователи этого типа пред­назначаются для измерения линейных перемещений.

В плоском преобразователе (рис. 3.9, в) емкость зависит от изме­нения активной площади пластин при повороте одной пластины относительно другой. Такие преобразователи используют при измерении угловых перемещений.

Емкостные преобразователи с изменением диэлектрической проницаемости среды между пластинами могут применяться, например, для регули­рования влажности формовочной смеси и дозирования воды при ее приготовлении. При колебании уровня жидкости изменяется емкость конденсатора (рис. 3.9, г), электродами которого служат корпус 1 и металлический стержень 2. Емкость такого преобра­зователя складывается из емкости цилиндрического конденсатора без жидкости и параллельно включенной емкости цилиндрического конденсатора с жидкостью. Емкость и чувствительность такого преобразователя увеличиваются с уменьшением отношения диаметров электродов, а также с ростом высоты цилиндра.

Емкостные преобразователи просты по устройству, обладают достаточно высокой чувствительностью, малыми размерами и мас­сой. Однако они имеют три недостатка: мощность выходного сигнала мала, поэтому необходимо применять усилитель; при промышленной частоте электрического тока практически невоз­можно получить достаточную мощность, в этой связи они полу­чают питание от источника высокой частоты (10 кГц и более); сильное влияние оказывают паразитические емкости и посторон­ние электрические поля, поэтому требуется тщательное экранирование как самих датчиков, так и соединительных проводов.




Рекомендуемые страницы:


Читайте также:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (595)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)