Мегаобучалка Главная | О нас | Обратная связь


Обзор методов решения аналогичных задач



2019-12-29 192 Обсуждений (0)
Обзор методов решения аналогичных задач 0.00 из 5.00 0 оценок




Курсовой проект

на тему:

«Информационно – измерительная система удалённого действия для контроля светового излучения»

 

 

                                                                                                         

 

 

Выполнил:                                                                             Проверил:

студент гр.262101                                                                 Басов В.Г.

Дьянов А.А.

 

 

Минск 2006

Содержание

 

Введение………………………………………………………………………... 4
1 Обзор методов решения аналогичных задач……………………………….. 9
2 Выбор, обоснование и предварительный расчет структурной схемы……. 13
2.1 Модули серии ADAM-5017…………………………………...…….….. 13
 2.2  LUX LITE - Датчики видимого светового излучения……....……..…. 14
2.3 Расчёт детекторов 16
3 Описание принципа работ разработанной структурной схемы……….….. 21
4 Списание схемы электрической и электрический расчет…………….…… 22
5 Определение метрологических характеристик измерительного канала и расчет класса точности канала………………………………………………...   27
Заключение……………………………………………………………………... 29
Список литературы…………………. ………………………………………… 30
   
   

 

 

Введение

 

Прогрессивное развитие производства, эксплуатация различных объектов невозможно без измерения большого количества физических величин (ФВ). Измерительные системы разнообразны по назначению и характеризуется такими параметрами как чувствительность, точность и т.п. Но основная часть из них может одновременно измерять какую-либо одну величину. Однако, эта ФВ имеет постоянное значение, а внешние условия не изменяются. На практике, в производстве или в научных исследованиях приходится иметь дело с огромным потоком информации, т.e. получать сведения о большом количестве ФВ, которые в свою очередь, могут быстро меняться.

В современной измерительной техники наметились общие тенденции, из которых главными являются: переход от единичных приборов к измерительным системам, в том числе к самонастраивающимся и адаптивным системам; развитие измерительных подсистем в робототехнических комплексах и совершенствование систем активного контроля; применение микропроцессоров в измерительных системах и устройствах для переработки измерительной информации, применение числового программного управления процессом измерений, приведшим к созданию информационно-измерительных систем (ИИС).

ИИС – совокупность функционально объединенных измерительных, вычислительных и др. вспомогательных технических средств для получения измерительной информации, ее преобразования, обработки в целях представления потребителю в требуемом виде, либо автоматического осуществления функций контроля, диагностики, идентификации.

В ИИС объединяются технические средства, начиная от датчиков, АЦП, каналов передачи и кончая устройством выдачи информации, а также вычислительные средства с соответствующим программным обеспечением. Последние необходимы как для управления работой собственной системы, так и для решения в ИИС измерительных и вычислительных задач, а также управление конкретным экспериментом.

Задача, решаемая ИИС, обратная задаче отдельного измерительного устройства: не расчленять параметры объекта измерения с целью выделить и воспринять их по отдельности, а объединить данные обо всех главных параметрах объекта и создать тем самым достаточно полное, совокупное его описание. Таким образом, отличительными особенностями ИИС являются: одновременное измерение многих параметров объекта (т.е. многоканальность) и передача измерительной информации в единый цент; представление полученных данных, в том числе их унификация, в виде наиболее удобном для последующей обработки получателем.

Создание ИИС связано с решением системных вопросов: метрологическая унификация средств измерений (датчиков, преобразователей, указателей) независимо от вида измеряемых величин; оптимизация распределения погрешностей между различными средствами измерений, входящими в ИИС; наиболее целесообразное размещение указателем перед оператором.

Структурная схема любой ИИС показана на рисунке 1.

 

Рисунок 1 — Обобщенная структурная схема ИИС

 

Где 1, 2, ...N - устройство сбора и измерения информации. Этими устройствами являются датчики, воспринимающие различные ФВ и преобразующие их в электрические сигналы; измерительные устройства, выполняющие собственно-измерительные операции: сравнение с мерой, квантование, кодирование.

Устройство обработки информации предназначено для выполнения математической обработки измерительной информации по заданному алгоритму. Сюда же может входить устройство запоминания для хранения информации.

Устройство отображения информации – для предоставления полученной информации оператору, которое может состоять из декодирующих, регистрирующих и показывающих устройств.

Устройство управления – для организации взаимодействия всех остальных устройств [1].

В реальных ИИС некоторые устройства могут отсутствовать. Например: устройство обработки или хранения информации. Но устройство сбора, измерения и представления информации характерны любой ИИС.

Уместно дать краткую историческую справку развития ИИС и указать основные области их применения.

    Основная концепция нового класса средств ИИТ — измерительных информационных систем — была сформулирована в начале 60-х годов. В основу концепции ИИС уже в то время была положена системная организация совместной автоматической работы средств получения, обработки и передачи количественной информации. Тогда были созданы ИИС, которые можно отнести к первому поколению таких систем. Системы первого поколения характеризуются централизованным циклическим получением измерительной информации и обработкой ее в основном с помощью входящих в состав ИИС специализированных вычислительных устройств, использованием в качестве элементной базы дискретной полупроводниковой техники. Дальнейшая обработка информации при необходимости в большинстве случаев производилась вне ИИС, в универсальных ЭВМ, занятых обслуживанием и других источников информации. Однако сложные ИИС в то время имели в своем составе ЭВМ, выполняющие только задачи, стоящие перед этими системами.

    Измерительные информационные системы второго поколения (70-е годы) характеризуются адресным сбором измерительной информации, обработкой информации с помощью ЭВМ, входящих в состав систем, и в меньшей степени с помощью специализированных вычислительных устройств, использованием в качестве элементной базы микроэлектронных схем малой и средней степени интеграции.

    Широкое введение ЭВМ в состав ИИС стало возможным после организации промышленного выпуска управляющих вычислительных машин и комплексов, а также малых ЭВМ с достаточными вычислительными и логическими возможностями, гибким программным управлением, приемлемыми габаритами, потребляемой энергией и стоимостью.

    Улучшение многих характеристик ИИС было достигнуто благодаря использованию больших интегральных микросхем, микропроцессоров, микропроцессорных наборов (включая устройства памяти с большим объемом запоминаемой информации) и микро-ЭВМ.

    Качественно новые возможности при проектировании, изготовлении и эксплуатации ИИС были получены при применении стандартных цифровых интерфейсов и промышленных функциональных блоков, совместимых между собой по информационным, метрологическим, энергетическим и конструктивным характеристикам. Применение в ИИС ЭВМ и стандартных цифровых интерфейсов, привело к необходимости формального описания алгоритмов действия систем и к резкому возрастанию роли программного обеспечения систем.

    Оказалось, что для цифровых централизованный ИИС с программным управлением можно организовать промышленный выпуск универсального цифрового ядра, в которое входят цифровые измерительные и вычислительные средства и стандартные устройства ввода и вывода цифровой информации.

    Количество созданных и реально действующих в нашей стране ИИС резко возрастает и трудно поддается оценке. Видимо их число может быть оценено в несколько десятков тысяч.

    Измерительные информационные системы находят применение везде, где необходимо автоматическое получение опытным путем количественной информации о состоянии объектов исследования, причем это получение связано с выполнением массовых операций и (или) осуществлением измерений в сложной форме, недоступной локальным измерительным приборам. Не имея возможности рассмотреть весь огромный диапазон областей применения ИИС, остановимся хотя бы на перечислении некоторых из них.

    В измерительном оборудовании систем управления, жизнеобеспечения и научно-исследовательских работ космических кораблей, в наземных измерительно–управляющих комплексах все большую роль играют ИИС. Радиотелеметрические системы космических исследований являются важной разновидностью ИИС.

    В области экспериментальной аэродинамики с помощью ИИС производится измерение аэродинамических сил, распределения давлений, температур, расходов газов и многих иных величин.

    Экспериментальная прочность нуждается в измерении внешних сил, воздействующих на исследуемые объекты, и реакции на их действие (напряжения в материале, смещения и т. д.), характеристик самих объектов и т. п. В обширных областях тензометрии, динамометрии, термометрии и т. п. в качестве основных экспериментальных средств применяются ИИС.

    Геофизические экспериментальные исследования оснащены многочисленными ИИС, в которых реализуются эффективные методы исследования строения земной коры.

    В океанографических исследованиях с помощью ИИС происходит измерение температур, химического состава, скоростей движения, давлений в водной среде и т. п.

    Химические, физические, биологические экспериментальные исследования основаны на огромном количестве разнообразных методов и их реализаций с помощью ИИС. Это определение состава и характеристик объектов исследования и внешних воздействий, условий эксперимента и т. п.

    Для применения в метеорологии, для охраны окружающей среды созданы многочисленные ИИС, позволяющие получать и обрабатывать измерительную информацию о состоянии воздушной и водной сред, о солнечной радиации и т. п.

    Особо, пожалуй, следует отметить ИИС, построенные для нужд метрологических исследований и метрологического обеспечения единства измерений в стране, так как такие ИИС должны обладать высокими метрологическими характеристиками.

    Огромное поле для приложения ИИС представляют комплексные испытания машин, конструкций, приборов, оборудования. Испытания таких конструкций, как суда, летательные аппараты, двигатели (внутреннего сгорания, реактивные и др.), требуют создания сложных технических средств в целях получения необходимой, главным образом измерительной, информации.

    Медицина оснащается современными ИИС, позволяющими получать и оценивать ряд физиологических и психофизических параметров человека. Можно предполагать, что количество ИИС, применяемых в медицине, будет резко возрастать.

    Уже говорилось, что в промышленности, на транспорте, в сельском хозяйстве, вообще во всем народном хозяйстве страны довольно широко используются ИИС. В связи с применением микропроцессорных средств существенно расширяются возможности ИИС. Они становятся незаменимой составной частью роботов и др. Автоматизированный контроль и испытания продукции производятся в основном с помощью ИИС.

    Перед тем как закончить краткий очерк основных областей применения ИИС, нужно отметить, что реализация ИИС, особенно встроенных в конкретную аппаратуру, установку и т. п., может быть не выделена конструктивно и не отражена в названии. Так, испытательный стенд, станция, аппаратура, отдельная часть АСУ каким-либо технологическим процессом и т. п. нередко содержат в своем составе какую-либо разновидность ИИС. Другими словами, на практике часто встречаются используемые, но не выделенные особо в явном виде ИИС.

    В настоящее время создается и начинает использоваться третье поколение ИИС, в котором, как можно предполагать, более широкое применение получат системные измерительные преобразователи (голографические, телевизионные, рентгенографические и т. п.), позволяющие подобно рецепторным полям биологических анализаторов воспринимать поля исследуемых величин. Рассредоточение вычислительной мощности по различным уровням и блокам ИИС может уменьшить потоки информации, сократить общее время обработки, повысить надежность работы системы. В ИИС будет более широко осуществляться многофункциональная обработка измерительной информации, благодаря рациональному сочетанию средств с жесткой структурой (аппаратная реализация) и гибкими перестраиваемыми структурами и программами работы. Будут созданы измерительные, контрольные и другие роботы. В быстродействующих ИИС, работающих в реальном времени, будут объединены процедуры измерения и обработки информации. Существенно расширится применение устройств памяти. Будут широко, использоваться выпускаемые промышленностью наборы функциональных устройств, объединяемых стандартными интерфейсами. Большое значение приобретут диалоговые режимы работы оператора с ИИС. В элементной базе резко увеличится доля интегральных микросхем большой и сверхбольшой степени интеграции.

    Следует отметить, что появление нового поколения ИИС не перечеркивает существование предыдущего, а берет из него наиболее важное и рациональное.

Современные системы автоматизации производства требуют статистических и информационных данных, позволяющих оценить затраты, предотвратить убытки, оптимизировать управление производственным процессом, повысить эффективность использования сырья. Этот постоянно возрастающий спрос на информацию приводит к необходимости применения в системах контроля не простых сигнализаторов, а средств, обеспечивающих непрерывное измерение.

 

 

Обзор методов решения аналогичных задач

 

Лишь с помощью оптических датчиков можно бесконтактно измерить ряд физических величин, как, например, перемещений, вибраций, температуры, светового излучения и т. д.. При этом информация передается не по кабелю, а световыми волнами, которые могут изменяться по интенсивности, фазе, цвету или геометрическому распределению в пространстве и поэтому оказываются пригодными для получения и передачи информации. Достаточно простым оптическим датчиком является, например, фотоячейка. Она состоит из источника света (лампы накаливания или светодиода) и приемника (фотодиода или фоторезистора). Нарушение передачи света от источника к приемнику служит информацией о нахождении объекта в фотоячейке. Если число импульсов отнести к единице времени, то, например, при конвейерном производстве можно получить информацию о количестве деталей, изготовленных за 1 час или даже за день.

Основные принципы

Преобразование оптического сигнала в электрический осуществляется детекторами излучения, использующими различные физические эффекты. Но существует три типа детекторов излучения, наиболее часто применяемых в оптических датчиках, а именно фотодиоды, фоторезисторы и приемники теплового излучения (ИК-датчики).

Фотодиоды

При облучении кремниевых фотодиодов светом в них возникает напряжение, определенным образом зависящее от силы света. Эффект, вызывающий возникновение этого напряжения, называется внутренним фотоэффектом.

На практике чаще всего применяют pin-диоды. «Эти диоды имеют слоистую структуру (рисунок – 1.2), в которой тонкие проводящие слои pи n –типа разделены областью нелегированного высокоомного кремния (i). При попадании на pi – переход световых лучей достаточно высокой энергии (E = hv)возникает фототок I(ток короткого замыкания) порядка 0.1...1 А/Вт. Чувствительность такого фотодиода очень сильно зависит от длины волны (цвета) используемого излучения.

Обозначенная здесь через Q.E – квантовая эффективность характеризует отношение числа фотонов, попавших на диод, к числу электронов, возникших в виде фототока I.

Фототок I изменяется линейно в зависимости от интенсивности падающего света при ее изменении в пределах более 6 порядков, так что возможна прямая индикация интенсивности света.

Нижняя область этой характеристики ограничена шумами (шумы Джонсона, шумы темнового тока и шумы дробного эффекта).

 

 

 

Рисунок 1.2 – Структура pin–диода.

 

Для определения разрешающей способности датчика основное значение имеет эквивалентная мощность шума (ЭМШ). Этот параметр определяется как отношение шумового тока (в А/Гц) к чувствительности к световому потоку (в А/Вт) при отношении сигнал/шум, равном 1. Поскольку чувствительность к лучевому потоку зависит от длины волны, то это же справедливо и для параметра ЭМШ. Изготовители детекторов излучения чаще всего указывают значение ЭМШ в максимуме кривой чувствительности, причем почти всегда у обычных детекторов излучения оно составляет примерно 10 Вт/Гц.

 

Фоторезисторы

У некоторых материалов (например, CdS, CdSe, PbS, PbSe) электрическое сопротивление изменяется под действием света из-за образования электронно-дырочных пар. Возникающие при этом свободные носители заряда вызывают резкое снижение сопротивления. На рис. 8.0.7 показана зависимость сопротив­ления такого датчика при различной освещенности (измеренной в люксах). В зависимости от силы света оно изменяется от 100 до 1 кОм. Спектральная чувствительность (рисунок 1.3) определяется выбором материала. Так CdS обладает максимальной чувствительностью в зеленой области спектра и поэтому особенно пригоден для применения в измерителях освещенности. В противоположность этому максимум спектральной чувствительности CdSe находится в красной области, а у фоторезисторов из PbS/PbSe – даже в ИК-области.

 

Рисунок 1.3 – Распределение спектральной чувствительности различных фоторезисторов.

 

Датчики Ик – излучения

Для ИК-диапазона от 0,8 до 12 мкм существует множество датчиков излучения (рисунок 1.4) на основе селенида свинца (PbSe), сульфида свинца (PbS), арсенида индия (InAs), антимонида индия (InSb) и германия, а также пироэлектрические детекторы

Рисунок 1.4 – Характеристики спектральной чувствительности различных датчиков ИК-излучения.

При резком воздействии ИК-излучения на пироэлектрический детектор, вызывающем его нагрев, напряжение или ток (в зависимости от вида схемы) из­меняются лишь кратковременно, а затем спадают до нуля даже и при сохраняющемся действии облучения.

Эквивалентную схему пироэлектрического детектора можно представить в виде параллельного (при измерении тока) или последовательного (при изме­рении напряжения) соединения конденсатора и генератора (источника тока или напряжения), как показано на рисунке 1.5. Чувствительность как по току, так и по напряжению зависит от частоты падающего излучения. Ниже 10 Гц предпочтительно усиление по напряжению, тогда как в случае высокочастотных широкополосных сигналов более целесообразно усиление по току.

 

 

Рисунок 1.5 –Эквивалентная схема пироэлектрического детектора.

 



2019-12-29 192 Обсуждений (0)
Обзор методов решения аналогичных задач 0.00 из 5.00 0 оценок









Обсуждение в статье: Обзор методов решения аналогичных задач

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (192)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)