Мегаобучалка Главная | О нас | Обратная связь


И количества. Система СИ. Основные единицы физических величин и их производные



2019-12-29 180 Обсуждений (0)
И количества. Система СИ. Основные единицы физических величин и их производные 0.00 из 5.00 0 оценок




Всеобщая взаимосвязь явлений.

Понятие о взаимосвязи и размерности физических величии

Все явления в мире так или иначе взаимосвязаны и подчиняются общим физическим законам. Чтобы иметь возможность сопоставлять физические вели­чины друг с другом, производить расчеты нужно каждую физическую величину представить через некоторые общие для всех исходные физические величины, принимаемые за первичные. Однако эти первичные величины могут быть выбраны произвольно, и тогда при определении их физической сущности и при расиста” неизбежно возникнут дополнительные трудности. Чтобы их избежать, нужно определить те физические категории, которые являются неизменными при преобразованиях материи при взаимодействии материальных образований, (относительно которых будут оцениваться все остальные физические величины и параметры. Но если речь идет о всеобщих закономерностях материи во Вселенной, то должны быть определены всеобщие физические инварианты, которые не изменяются ни при каких преобразованиях форм материи и ни при каких физических процессах. То есть они инвариантны по отношению и к преобразованиям форм материи, и к конкретным физическим явлениям.

Общими физическими инвариантами могут быть только такие категории, которые являются всеобщими для всех без исключения физических явлений, то есть для всей реальности нашего физического мира. Такими категориями является движение и три его неразрывных составляющих — материя, пространство и время. Ибо в мире нет ничего, кроме движущейся материи. И следовательно, все физические величины и все физические явления так или иначе будут определяться этими категориями как исходными. Именно они поэтому и должны валяться основой любой системы измерений, т.е. в основе любой системы измерений должны являться три величины — мера материя, такой мерой является единица массы как количества материи и обозначается через символ М (от англ. слова "matter" — вещество, материя); мера пространства, такой мерой является единица длины и обозначается через символ L (от англ. слова "length" — длина); мера времени, такой мерой является единица времени и обозначается через символ Т (от англ. слова “time” — время).

Размерность физической величины — это выражение, показывающее связь данной физической величины с физическими величинами, положенными в основу системы единиц. Размерность записывается в виде произведения символов соответствующих основных величин, возведенных в определенные степени, которые называются показателями размерности. Величины, в которые все основные величины входят в степени 0, называются безразмерными. Во всех остальных случаях размерность конкретной физической величины записывается в виде:

[u]=MxLyTz,                (1)

где u есть обозначение самой величины, х, у, г — показатели размерности каждой из основных величин. Например, размерность ускорения должна быть записана в виде:

 

[a] = LT -2,                                  (2)          

а размерность работы и мощности соответственно в виде:

 

[А] = М L2T--2 , [Р\ = М L2T--3 .                      (3)

 

Поскольку во многих случаях такой вид обозначений не очень удобен, то на практике применяются производные величины, изначально содержащие в себе исходные величины в определенных степенях. Таким величинами являются, например, мера площади — м2, мера объема — м3, мера силы — Ньютон (Н), равная [Н] = М LT--2 или Н = кг×м×с-2; или мера работы — Джоуль (Дж), равная [Дж] = М L 2 Т -2 или Дж = кг ×м 2 ×с -2, и т.п.

Системы измерений как физический язык анализа качества

и количества. Система СИ. Основные единицы физических величин и их производные

Для того чтобы можно было производить сопоставлять физические параметры и производить какие-либо расчеты необходимо иметь систему единиц физических величин, которая явится общим физическим языком для единой оценки качества параметров — их физической сущности и их количественного содержания Тогда каждый параметр может иметь количественное значение, выраженное через эти величины. Но в каждой системе единиц нужно какие-то величины принимать за исходные, а какие-то окажутся производными величинами, зависящими от первых. Неудачный выбор исходных величин приведет к тому, что размерность некоторых производных величин окажется лишенной физического смысла.

В первых системах единиц в качестве единиц были выбраны единицы дли­ны и массы, например, в Великобритании фут и английский фунт. Слово фут происходило от английского слова foot — ступня и равнялась 1/3 ярда или 12 дюймам или 0,3048 м. Фунт (от латинского pondus — тяжесть), обозначался lb подразделялся на 16 унций или на 16 х 16 = 256 драхм, а также на 7000 грантов. Торговый английский фунт составлял в сегодняшней мере 0,45359237 кг.

В России были выбраны аршин и русский фунт. Аршин до Петра I равнялся 27 английским дюймам, но при Петре I он был установлен равным 28 английским дюймам и с тех пор сохранялся неизменным. 1 аршин = 16 вершкам =71,12 см. До введения метрической системы мер аршин использовался в ряде стран — Болгарии, Афганистане, России, Турции и Иране и колебался от 65,5 см до 112 см. Русский торговый фунт равнялся 1/40 пуда и был равен 32 лотам или 96 золотникам или 9216 долям или 409,51241 грамм.

Неудобства в сфере торговли и промышленного производства, связанные с различием национальных систем единиц, натолкнули на идею разработки метрической системы мер в конце XVIII века во Франции, послужившей основой для международной унификации единиц длины (метр) и массы (килограмм).

 

В XIX веке К. Гаусс и В. Э. Вебер предложили систему единиц для электрических и магнитных величин, а во второй половине XIX столетия Британская ассоциация по развитию наук приняла две системы единиц: СГСЭ (электростатическую) и СГСМ (электромагнитную). В первой из них за безразмерную единицу принята диэлектрическая проницаемость вакуума, а во второй — магнитная проницаемость вакуума. Это сразу же лишило их какого бы то ни было физического содержания. В результате все электромагнитные величины в системах СГСЭ и СГСМ имеют дробную размерность, например, электрический заряд имеет размерность [см 1/2 ×г1/2 ], что не только не удобно, но и еще раз подчеркивает отсутствие в этих системах единиц физического смысла.

В 1901 г. итальянский физик Дж. Джорджи предложил систему единиц, основанную на метре, килограмме, секунде и одной электрической единице (позднее был выбран ампер), появилась система МКСА. Все остальные величины были производными.

В настоящее время наметился принципиально иной подход к выбору основных величин, который тем не менее во многом совпал с уже существующей практикой.

В каждом физическом явлении участвуют три инварианта — материя, пространство и время. В конкретном явлении они проявляются в виде конкретной формы их взаимосвязи, что выражается в виде их размерности. Система измерений СИ, оперирующая мерами инвариантных величин — фактически коли­чеством материи, выраженной мерой массы — кг, пространством, выраженным мерой длины — метром, а также временем, выраженным мерой времени — секундой фактически полностью соответствует этим инвариантным величинам и поэтому является наиболее физической, отражающей реальное положение вещей в мире. В любой физической величине меры материи, пространства и времени входят в целочисленных степенях.

Международная система единиц физических величин СИ была принята в 1960 г. 11-й Генеральной конференцией по мерам и весам. Эта система единиц разработана с целью замены сложной совокупности систем единиц и отдельных внесистемных единиц, сложившихся на основе метрической системы мер, и упрощения пользования единицами. Достоинством системы СИ являются ее универсальность (охватывает все отрасли науки и техники) и когерентность, т.е. согласованность производных единиц, которые образуются по уравнениям, не содержащим коэффициентов пропорциональности. Благодаря этому при расчетах в формулы не требуется вводить коэффициенты пропорциональности.

Система СИ основана на метрической системе мер. В 1975 году во Франции был принят декрет о введении метрической системы мер, в основу которой был положен метр, равный одной сорокамиллионной доле Парижского меридиана. В 1799 году был утвержден платиновый прототип метра. В 1875 году 17 стран, в том числе и Россия подписали Метрическую конвенцию для обеспечения международного единства и усовершенствования, метрической системы. В России как необязательная метрическая система была утверждена 4 июня 1899 г. (проект был разработан Д. И. Менделеевым) и как обязательная была введена декретом СНК РСФСР 14 сентября 1918 г., а для СССР постановлением СНК СССР от 21 мюля 1925 г.

 

Первоначально в метрическую систему мер входили квадратный метр как мера площади, кубический метр как меря объема и для массы — килограмм (масса 1 куб. дм. воды при 4 град. Цельсия), а также литр (для вместимости). Единицей времени была принята секунда как 1/3600 часа, равного 1/24 суток.

По основным мерам созданы воспроизводимые эталоны, которые все время менялись, уточнялись и совершенствовались. В настоящее время за эталоны приняты:

— эталон метра как “длина, равная 1.650.763,73 длины волны в вакууме излучения, соответствующего переходу между уровнями 2р10 и 5 d 5 атома криптона 86” (БСЭ, 3 изд. т. 16, с. 167);

— эталон килограмма — “гиря из платиноиридиева сплава, имеющая форму цилиндра высотой и диаметром 39 мм” (там же, т. 12, с. 108);

— эталон секунды - “время, равное 9.192.631.660 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133 Сs” (там же, т. 23. с. 192).

Все единицы в системе СИ делятся на основные, дополнительные и производные.

Основные единицы:

длина, выраженная в метрах (м);

масса, выраженная о килограммах |кг|;

время, выраженное в секундах [с], а также

сила электрического тока, выраженная в Амперах [А|;

термодинамическая температура, выраженная в градусах Кельвина [К];

сила света, выраженная в канделах [кд];

количество вещества, выраженное в молях [моль].

Дополнительные единицы'

плоский угол, выраженный в радианах [рад);

телесный угол, выраженный в стерадианах [ср].

Производные единицы: площадь [м2 ], объем [м3], частота {Гц}, скорость [м/с], ускорение (м/с2); угловая скорость (рад/с); угловое ускорение [рад/с2]; плотность (кг/м1]; сила [Н] (Ньютон); давление (Па] (Паскаль); кинематическая вязкость (м/с]; динамически вязкость (Па/с]; работа, энергия, количество теплоты [Дж) (Джоуль); мощность (Вт] (Ватт); количество электричества [Кл] (Кулон); электрическое напряжение, э.д.с. (В) (Вольт); напряженность электрического поля (В/м); электрическое сопротивление (Ом] (Ом); электрическая проводимость (См) (Сименс); электрическая емкость (Ф) (Фарада); магнитный поток (Вб) (Вебер); индуктивность (Г) (Генри); магнитная индукция (Т) (Тесла); напряженность магнитного поля (А/м]; магнитодвижущая сила [А]; энтропия (Дж/К]; теплоемкость удельная [Дж/кг×К]; теплопроводность {Вт/м×К]; интенсивность излучения (Вт/ср); волновое число (м-1]; световой поток [лм] (люмен); яркость [кд/м2]; освещенность (лк) (люкс).

Первые три основные единицы (метр, килограмм, секунда) позволяют образовывать когерентные производные единицы для всех величин, имеющих механическую природу, остальные добавлены для образования производных единиц величин, не сводимых, как считалось, к механическим, — для электрических и магнитных (Ампер), тепловых (Кельвин), световых (кандела) и величин физической химии и молекулярной физики (моль).

Однако необходимо отметить, что реально основными являются только три величины — метр, килограмм, секунда, поскольку только они соответствуют физическим инвариантам. Остальные все величины являются производными от них, в том числе электрические, световые, тепловые и физико-химические. Перевод этих величин в систему МКС (метр, килограмм, секунда) уже выполнен применительно к электрическим величинам и принципиально может быть выполнен применительно к остальным.

Система измерений СИ, как наиболее отвечающая естественным всеобщим физическим инвариантам, принципиально не подлежит ревизии, а лишь последующим уточнениям, имеющим целью привести все физические единицы, включая электрические, тепловые, световые и химические, к трем основным единицам — килограмму, метру и секунде. Дополнительные единицы (плоский и телесный углы) могут остаться без изменения. Все остальные системы единиц должны быть исключены из обращения.

Примечание: имеются и иные мнения по поводу системы СИ, в частности, подвергается сомнению правильность выбора значения магнитной проницаемости вакуума, ставится под вопрос обоснованность введения килограммового эталона массы (гравитационная масса определяется через пространственную протяженность и время, в соответствий с третьим законом Кеплера).



2019-12-29 180 Обсуждений (0)
И количества. Система СИ. Основные единицы физических величин и их производные 0.00 из 5.00 0 оценок









Обсуждение в статье: И количества. Система СИ. Основные единицы физических величин и их производные

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (180)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)