Мегаобучалка Главная | О нас | Обратная связь


Суспензионная полимеризация



2019-12-29 274 Обсуждений (0)
Суспензионная полимеризация 0.00 из 5.00 0 оценок




Полимеризация в суспензии – конкурирующий технологический процесс, который развивается параллельно с полимеризацией в массе, основан на малой растворимости виниловых мономеров в воде и на нейтральности последней в реакциях радикальной полимеризации. Процесс используется для получения продукта специальных марок, главным образом, пенополистирола. Суспензионный метод производства – полунепрерывный процесс – характеризуется наличием дополнительных технологических стадий (создание реакционной системы, выделение полученного полимера) и периодическим использованием оборудования на стадии полимеризации. Процесс проводится в реакторах объемом 10-50 м3, снабженных мешалкой и рубашкой. Стирол суспензируют в деминерализованной воде, используя стабилизаторы эмульсии; инициатор полимеризации (органические пероксиды) растворяют в каплях мономера, где и происходит полимеризация. В результате образуются крупные гранулы в суспензии полимера в воде. Полимеризацию ведут при постепенном повышении температуры от 40 до 130 °С под давлением в течение 8-14 ч. Из полученной суспензии полимер выделяют центрифугированием, после чего его промывают и сушат. Закономерности суспензионной полимеризации близки к закономерностям полимеризации в массе мономера, но существенно облегчены теплоотвод и перемешивание компонентов системы.

 


5 Твердофазная полимеризация

Полимеризация мономеров, находящихся в кристаллическом или стеклообразном состоянии. При этом молекулы мономера жестко фиксированы в пространстве и подвижность их крайне ограничена, что определяет особенности кинетики процесса и структуру возникающих макромолекул. В большинстве случаев для инициирования твердофазную полимеризацию используют γ-излучение или ускоренные электроны.

Переход мономерного кристалла в полимер связан с изменением как средних расстояний между отдельными фрагментами (межмолекулярные расстояния меняются на длины химических связей), так и пространственная ориентации мономерных звеньев.

Имеются два крайних случая:

1) структура мономерного кристалла существенно определяет структуру полимера (как, например, в случае твердофазной полимеризации сопряженных диацетиленов или триоксана);

2) полимер возникает как самостоятельная фаза в протяженных дефектах кристаллической решетки мономера, что приводит к дальнейшей ломке мономерного кристалла; образующаяся полимерная фаза аморфна (например, при твердофазной полимеризации акриламида).

Существует большое количество промежуточных случаев.

Если геометрические параметры кристаллической решетки мономера находятся в определенном соответствии с параметрами образующихся макромолекул, кристаллическая решетка может непосредственно влиять на ориентацию и строение растущих полимерных цепей. Образующиеся при этом макромолекулы обычно ориентированы вдоль определенной оси исходного кристалла в направлении, по которому взаимное расположение мономеров оптимально для образования химических связей между ними (топотактический процесс). Так происходит твердофазная полимеризация некоторых циклических мономеров с раскрытием цикла, например триоксана, γ-пропиолактона, а также 2,5-дистирилпиразина, бис-(n-толуолсульфонат)-2,4-гександиола.

Классические представления о механизме полимеризации в жидкой фазе не объясняли закономерности твердофазной полимеризации. Так, полимеризация формальдегида при 4,2 К протекает хотя и с малой, но вполне измеримой и не зависящей от температуры скоростью. При крайне малой возможности трансляции перемещений в кристалле трудно представить гибель растущих макрорадикалов путем рекомбинации или диспропорционирования. Процесс роста полимерной цепи постепенно останавливается из-за прогрессирующих затруднений подачи мономера к растущему активному центру, т. е. наблюдается кинетическая остановка процесса ("застывание и оживление" полимерной цепи). Были обнаружены автоволновые режимы твердофазной полимеризации, обусловленные

 

взаимосвязью между хрупким разрушением образца и химической реакцией, вызывающей дальнейшее его послойное разрушение. Такая механохимическая автоволна реализуется, например, при 4,2-77 К в поликристаллической ацетальдегиде, причем после прохождения автоволны образец становится аморфным.

Некоторые мономеры способны включаться в полости кристаллической решетки другого вещества, образуя более или менее упорядоченные в пространстве ряды или слои. Так, молекулы мочевины и тиомочевины в присутвии виниловых и диеновых мономеров (в частности, 2,3-диметил-1,3-бутадиена) образуют гексагон. кристаллы с каналами, заполненными линейными последовательностями мономеров. При радиационном инициировании в этих канальных комплексах происходит полимеризация, сохраняющая некоторые черты топотактического процесса.

В аморфных телах отсутствует трехмерная периодичность структуры и молекулы способны лишь к колебательному и небольшим вращательным движениям. Поэтому в стеклах полимерные цепи не развиваются, несмотря на присутствие активных центров.

При повышении температуры в области перехода стекла в переохлажденную жидкость вязкость изменяется на 10-15 порядков. В этой области размягчения стекла (с изменением температуры всего на несколько градусов) резко меняется характер химического процесса: стабилизированные в стекле радикалы приобретают трансляционную подвижность и начинают реагировать с мономером. Образуются n-мерные растущие радикалы, подвижность которых в вязкой переохлажденной жидкости настолько мала, что их встреча и рекомбинация практически не наблюдается.

Между тем подача малых молекул мономера к таким растущим центрам происходит легко и наблюдается их практически безобрывный рост. Эта уникальная ситуация широко используется в различных полимеризационных процессах (радикальная и ионная полимеризация, сополимеризация, прививка).

 

    6 Газофазная полимеризация


Способ проведения полимеризации, при котором мономер находится в газовой фазе, а продукт реакции образует твердую дисперсную или жидкую фазу.

Скорость газофазной полимеризации зависит от скорости диффузии мономера из газовой фазы в зону реакции и к активным центрам роста цепи в конденсированной фазе; от растворимости и сорбции мономера полимерной фазой; от удельной поверхности частиц катализатора, нанесенных на твердый сорбент при гетерогенной полимеризации. В зависимости от способа инициирования рост цепей может происходить в газовой фазе с последующей агрегацией образовавшихся макромолекул или в частицах полимера.

Для множества систем найдено отрицательное значение эффективной энергии активации полимеризации, что обусловлено уменьшением концентрации мономера, адсорбированного полимерными частицами или растворенного в них, с повышением температуры. Отсутствие приводит к снижению роли передачи цепи и росту средней молекулярной массы полимера. Теплообмен в газофазной полимеризации определяется теплопередачей от твердых частиц полимера к газу и зависит от отношения поверхности частиц к их объему.

Ранее из-за сложности регулирования теплоотвода распространение в мировой практике получила только газофазная полимеризация этилена при высоком давлении (100-300 МПа), протекающая по свободнорадикальному механизму (инициаторы –О–О–).

В этом процессе плотность газообразного мономера в критической точке приближается к плотности жидкой фазы (0,5 г/см3), и реакционная масса представляет собой раствор полимера в мономере. Впоследствии быстрое развитие получила газофазная полимеризация в псевдосжиженном слое на высокоэффективном металлоорганическом катализаторе, нанесенном на твердый тонкодисперсный носитель (например, силикагель). В реактор непрерывно или периодически вводят катализатор и газообразный мономер под давлением 1-3 МПа, создающий псевдосжиженный слой частиц катализатора.

В результате полимеризации мономера частицы катализатора укрупняются, оседают и периодически удаляются из реактора. Мономер циркулирует в системе реактор-выносной холодильник-компрессор, обеспечивая тем самым отвод тепла реакции. Степень превращения. мономера за один проход 1-3 %, поэтому объем реактора велик и при производительности 70-100 тыс. т/год составляет до 600 м3. В некоторых реакторах применяют дополнительные перемешивающие устройства.

Преимущества способа: отсутствие растворителей и разбавителей, что упрощает конечную обработку продуктов полимеризации; крупные частицы

полимера размером около 0,3-0,5 мм можно непосредственно использовать для переработки в изделия, минуя грануляцию; исключаются промывка, фильтрация, сушка продукта, регенерация растворителя, в результате чего резко снижаются затраты энергии. По этому способу производят полиэтилен высокой плотности, сополимер этилена с высшими олефинами, который по свойствам близок полиэтилену низкой плотности, полипропилен.

Газофазную привитую сополимеризацию используют для поверхностной модификации волокон и пленок, поверхности которых для создания активных центров полимеризации предварительно облучают УФ-светом или излучением высокой энергии, окисляют.

 

 


Заключение

Полимеризация была открыта ещё в середине XIX века, практически одновременно с выделением первых способных к полимеризации мономеров (стирола, изопрена, винилхлорида, метакриловой кислоты и др.). Однако суть полимеризации как цепного процесса образования истинных химических связей между молекулами мономера была понята лишь в 20—30-е гг. XX века благодаря работам Г. Штаудингера, С. В. Лебедева, Б. В. Бызова, К. Циглера. В 1922 г. химик Штаудингер доказал, что полимеры представляют собой соединения, состоящие из больших молекул, атомы которых связаны между собой ковалентными связями.

 

 

 




2019-12-29 274 Обсуждений (0)
Суспензионная полимеризация 0.00 из 5.00 0 оценок









Обсуждение в статье: Суспензионная полимеризация

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (274)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)