Мегаобучалка Главная | О нас | Обратная связь  


ГЛАВА 2.     МАТЕМАТИЧЕСКИЕ ЗАДАЧИ ДЛЯ ФРОНТА И ТЫЛА.




Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

МАТЕМАТИКИ И МАТЕМАТИКА

В ГОДЫ

ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЫ

СОДЕРЖАНИЕ:

                                                                                                                                                                                                                                            Стр.

1)Введение………………………………………………………………………..3

2)Глава 1.Участие учёных-математиков в боевых действиях……………4

3)Глава 2.Математические задачи для фронта и тыла……………………5

4)Глава 3. Вклад Челябинска в победу над фашистами…………………...9

5)Заключение……………………………………………………………………11

6)Приложение А. Фотографии…………………………………………….......12

7)Приложение Б. Задачи военной тематики…………………………….......16

8)Список литературы…………………………………………………………..22

ВВЕДЕНИЕ.

Прошло более 60 лет со дня победы советского народа в Великой Оте­чественной войне. Неисчислимые жертвы понесла страна во имя неза­висимости, свободы и общественных идеалов: миллионы погибших и ра­неных, страдания от голода, тысячи разрушенных городов идеревень, сотни тысяч угнанных на фашистскую каторгу.   



Несмотря ни на что совет­ский народ выстоял и победил.

Великая Отечественная война не прошла мимо советских математиков: тысячи из них ушли на фронт по мобилизации или добровольцами, многие переключились на решение важных задач, необходимых для победы, остальные не переставали трудиться на своих постах, веря в разгром врага и создавая для будущего новые научные ценности.

Актуальность данного исследования состоит в том, что реальных участников тех событий почти не осталось в жизни, мои ровесники знают о войне лишь из книг и кинофильмов. Но память человеческая несовершенна, многие события забывают. Мы должны знать реальных людей, которые приближали победу и подарили нам будущее.

Цель данной работы: определить вклад математики и математиков в победу в Великой Отечественной войне.

В рамках этой цели ставились следующие задачи:

1) Выяснить, кто из учёных-математиков принимал участие в боевых действиях.

2) Определить, какие задачи приходилось решать математикам в годы Великой

Отечественной войны.

3) Выяснить вклад  Челябинска в победу над фашистами.

 Среди методов исследования я использовала такие, как:

 ·изучение литературных источников,

·сравнительный анализ полученной информации,

·отбор  информации для работы,

·изучение и решение задач, которые могли решаться в годы войны,

·создание задач военной тематики для использования на уроках и во внеклассной деятельности.

 

ГЛАВА 1. УЧАСТИЕ УЧЕНЫХ - МАТЕМАТИКОВ В БОЕВЫХ ДЕЙСТВИЯХ.

  C первых же дней Великой Отечественной Войны огромное число математиков были мобилизова­ны или ушли на фронт доброволь­цами. Они храбро воевали и честно исполняли свой гражданский долг. При этом страна потеряла огромное число талантливой молодежи, которая могла бы стать гордостью отечественной науки. Об этом мы можем судить, во-первых, по тому, что среди возвратившихся после участия в сражениях Вели­кой Отечественной войны значитель­ное число стало крупными учены­ми - профессорами, членами - коррес­пондентами и академиками Всесоюз­ной и республиканских, академии на­ук.

Например, добровольцем ушел на фронт и участвовал в боях с фашистскими захватчиками в Крыму, на Украине, в Прибалтике и в Восточной Пруссии выдающийся математик и педагог А.А. Ляпунов (1911 – 1973). Он храбро воевал и внес много ценного в правила стрельбы. Здесь он ис­пользовал свой опыт математика, ко­торому свойственно искать самые лучшие решения. Его предложения увеличили эффективность стрельбы. За работы в области кибер­нетики, теории множеств и програм­мирования А.А.Ляпунов уже после войны (с 1964 г.) был избран член - корреспонден­том АН СССР.

В частях тяжелой артиллерии на Пулковских высотах отстаивал город Ленинград выдающийся специалист в области теории чисел, теории вероятностей и математической статистики, доктор физико – математических наук, а потом академик АН СССР Ю. В. Линник (1915 – 1972)

А во-вторых, каждый из университетов потерял многих мо­лодых ученых, уже сумевших про­явить себя и обещавших в будущем очень многое, но не вернувшихся с войны. Осенью 1941г. умер от ран и нечеловеческих условий вражеского плена Н.Б. Веденисов (1905 -1941). Свой путь в математике талантливый ученый начинал в области теории множеств и теории функций действительного переменного. Позже его научные интересы перешли в область теоретико – множественной топологии, где он получил ряд важных результатов. Война застала Веденисова преподавателем одной из военных академий. Не смотря на слабое здоровье и бронь, он принял твердое решение уйти в ополчение. В тяжелых боях под Ельней ученый был ранен и оказался в плену, где силы его быстро иссякли.

М. В. Бебутов (1913 – 1942) начал свою научную работу еще в студенческие годы. Его научные интересы были связаны с качественной теорией дифференциальных уравнений. Первая публикация относится к 1938г, а последняя опубликована посмертно в 1942г. И все же, несмотря на такой ограниченный промежуток научной деятельности, М. В. Бебутов получил в математике ряд важных результатов. Защищенная им в июне 1941г. диссертация была отмечена ученым советом как выдающаяся работа.  

Не вернулись с войны и такие талантливые молодые мате­матики Московского университета, как Г.М. Бавли, В.Н. Засухин, А.И. Герчиков, М.Е. Глезерман, И.Р. Лепе­хин, X.М. Мильштейн, С.С. Кудашев, С.Я. Карпов, А.Т. Павлов, М.И. Песин и многие, многие другие.

Все они могли бы стать гордостью нашей науки, но война прервала и зачеркнула раз­витие так славно начатого ими науч­ного пути. Сколько замыслов осталось не осуществленными, какие россыпи математических сокровищ они унесли с собой. Справедливо говорят, что трудно даже представить, какой была бы сегодня математика, не понеси мы этих потерь.

ГЛАВА 2.     МАТЕМАТИЧЕСКИЕ ЗАДАЧИ ДЛЯ ФРОНТА И ТЫЛА.

Мы должны преклоняться перед вы­держкой, самоотверженностью и вер­ностью Отчизне, которую проявля­ли математики-воины. Однако нельзя забывать и о другом вкладе мате­матиков в победу советского народа над сильным и коварным врагом. Этот вклад состоит в использовании тех специфических знаний и умений, ко­торыми обладают математики. Зна­чение этого фактора особенно важ­но в наши дни, когда война стала, в первую очередь, соревнованием ра­зума, изобретательности и точного расчета. Дело в том, что для военных действии привлекаются все до­стижения естествознания, а вместе с ними и математика во всех ее прояв­лениях. Создание атомного и ракет­ного оружия потребовало не только использования физических законов, но и обширных математических расчетов, создания новых математи­ческих моделей и даже новых вет­вей математики. Без таких предва­рительных математических исследо­ваний не создается ни одна техни­ческая система и, чем она сложнее, тем разнообразнее и шире ее мате­матический аппарат.

Для примера, крейсер представляет собой очень сложную техническую систему. Преж­де чем его построить, надо выявить геометрические формы корпуса судна, чтобы при движе­нии не создавалось дополнительное сопротивления и чтобы одновременно судно слушалось руля. Также не­обходимо обеспечить живучесть ко­рабля, надежность его управления, рассчитать влияние расположения машин, орудий, торпедных аппаратов на устойчивость и пр. Но и этого мало — требуется обеспечить связь со всеми боевыми единицами корабля, то есть создать эффективную систему управ­ления кораблем и его оружием.

Здесь перечислена лишь ничтожная доля тех задач, которые должен ре­шить математик, прежде чем корабль можно начать строить. Но серьезные задачи необходимо решать и в период его эксплуатации — штурманские расчеты, расчеты стрельб и т. д. 

Роль математики в военном деле велика. Обратимся к фактам прошлого.

2.1. Совершенствование военной техники.

В период Великой Отечественной войны техника была разнообразной и сложной. Она требовала широ­кого использования математических расчетов для ее изготовления и эксп­луатации.                                                                                                                                                            

Увеличение скорости поле­та самолетов требовало не только повышения мощности двигателей, но выбора оптимального профиля фюзе­ляжа и крыльев, а также решения многих других вопросов. Достижение блестящих результатов в совершенствовании боевых самолетов позволило А. С. Яковлеву и С.А.Лавочкину создать грозные истребители, С. В. Илюшину – неуязвимые штурмовики, А.Н. Туполеву, Н. Н. Поликарпову и В. М. Петлякову – мощные бомбардировщики.

Но, овладевая большими скоростями, авиаконструкторы столкнулись с неизвестным ранее явлениями в поведении самолета. В определенных режимах работы моторов в конструкциях самопроизвольно возникало возбуждение, причем с большой амплитудой, и это явление (флаттер) вело к разрушению самолета в воздухе. Опасности подстерегали скоростные машины и на земле. При взлете и посадке самолета колеса вдруг начинали вилять из стороны в сторону. Это явление, названное шимми, нередко вызывало катастрофы самолетов на аэродромах. Выдающийся советский математик М. В. Келдыш и возглавляемый им коллектив ученых исследовали причины флаттера и шимми. Созданная учеными математическая теория этих опасных явлений позволила советской авиационной науке своевременно защитить конструкции скоростных самолетов от появления таких вибраций. Ученые дали рекомендации, которые требовалось учитывать при конструировании самолетов. В результате наша авиация во время войны не знала случаев разрушения самолетов по причине неточного расчета конструкций, тем самым были спасены жизни многих летчиков и боевые машин.

  Советские ученые опередили врага и в создании реактивной авиации. 

Первый испытательный полет нашего реактивного истребителя был произведен в мае 1942 г., немецкий реактивный «Мессершмитт» поднялся в воздух через месяц после этого.

 Видная роль в деле обороны нашей страны принадлежит выдающемуся математику – академику

А. Н. Крылову, чьи труды по теории непотопляемости и качки корабля были использованы нашими Военно – Морскими силами. Он создал таблицу непотопляемости, по которой можно было рассчитать, как повлияет на корабль затопление тех или других отсеков, какие номера отсеков нужно затопить, чтобы ликвидировать крен и насколько это затопление может улучшить устойчивость корабля. Использование этих таблиц спасло жизнь многих людей, помогло сберечь огромные материальные ценности.

 

Теория стрельбы .

Традиционная область деятельно­сти ученых нашей страны — исследование артиллерийских систем.

· Проблемы пристрел­ки, разработанные еще вXIX веке, в связи с появлением новых типов

артиллерии потребовали в период Великой Отечественной войны до­полнительных исследований и состав­ления таблиц.                                                                                                                                                                         

а) Стрельба с самолета по самолету и по наземным целям также привела к математическим

за­дачам, которые нужно было срочно решить. Ими занимались как специалисты в области 

артиллерии, так и математики. Проблемы бом­бометания привели к необходимости составления

таблиц, позволяющих находить оптимальное время для сброса бомб на цель, а также область,   

кото­рую накроет бомбовой удар. Такие таблицы были составлены еще до на­чала войны,но для

самолетов, об­ладающих большими скоростями. Во время войны были созданы специальные

полки ночных тихоходных бомбарди­ровщиков, но для них не было таблиц бомбометания. 

На кафедре теории вероятностей МГУ были рассчитаны таблицы бомбометания с малых

высот при малых скоростях самолета. Они оказали несомненную помощь нашим

летчи­кам и летчицам.

б) В апреле 1942 г коллектив математиков под руководством основателя конструктивной

теории функции действительного переменного и первого аксиоматика теории вероятностей

академика С. Н. Бернштейна разработал и вычислил таблицы для определения местонахож-  

дения судна по радиопеленгам. Таблицы ускоряли штурманские расчеты примерно в 10 раз.

В 1943 г были подготовлены штурманские таблицы, которые нашли широкое применение в

боевых действиях дальней авиации, значительно повысили точность самолетовождения. Штаб  

авиации дальнего действия, дал высокую оценку работе математиков, отметив, что ни в

одной стране мира не были известны таблицы, равные этим по простоте и оригинальности.

· В результате решения сложной математической задачи член – корреспондент АН СССР

 Н. Г. Четаев определил наивыгоднейшую крутизну нарезки стволов орудия. Это обеспечивало максимальную кучность боя и непереворачиваемость снаряда при полете.

· Один из крупнейших наших математиков, академик А.Н. Кол­могоров, используя свои

работы по теории вероятности, разработал теорию наивыгоднейшего рассеивания артиллерийских снарядов. Он нашел полное решение этой задачи и довел его до практического использования. Полученные им результаты помогли повысить меткость стрельбы и тем самым увеличить эффектность действия артиллерии, которую заслуженно называли богом войны.

· Большое значение для решения практических задач, в том числе оборонных, имело развитие

номографии – одного из разделов математики, изучающей теорию и способы построения одного из видов чертежей – номограмм, которые экономят время для вычислений, упрощают их. Номограммы специального бюро при НИИ математики МГУ под руководством Н.А.Глаголева применялись при обороне городов, использовались для оптимального размещения зенитных батарей вокруг Москвы, в Военно-Морском Флоте.




Читайте также:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (333)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.015 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7