Мегаобучалка Главная | О нас | Обратная связь


Типы заданий в тестовой форме («формы тестовых заданий» по В.С.Аванесову)



2019-12-29 175 Обсуждений (0)
Типы заданий в тестовой форме («формы тестовых заданий» по В.С.Аванесову) 0.00 из 5.00 0 оценок




Московский Педагогический Государственный Университет

 

Химический факультет

 

Курсовая работа

По неорганической химии

 

Разработка тестовых заданий к допуску и защите лабораторных работ по химии для студентов химического факультета «Элементы V I А и  V I В группы периодической таблицы Менделеева »

 

 

                                      Выполнила: студентка 3 курса

                           3 группы

                                                      Химического факультета

                                              Дневного отделения                                                     

                                        Безбородова И.А

 

 

                                      Научный руководитель: Присягина И. Г.

 

Москва 2010 г.

 

 

ВВЕДЕНИЕ

На сегодняшний день в системе образования России, актуальность тестирования, как формы контроля учащихся общеобразовательных учреждений, сильно увеличилась в связи с все более нарастающим процессом компьютеризации, введением Единого Государственного Экзамена, а также в связи с общественным признанием тестирования, как современного, объективного вида контроля.

Цель исследования: Разработка проверочных тестовых заданий к допуску и защите лабораторных работ по химии для студентов химического факультета на тему «Элементы V I А и V I В группы периодической таблицы Менделеева »

Для достижения поставленной цели в курсовой работе нужно решить следующие задачи: 1) Изучить литературу по разработке проверочных тестовых заданий;

2) Изучить теоретический материал по элементам V I группы;
3) Раскрыть понятие, типы, структуру, элементы заданий в тестовой форме, требования к тестовым заданиям и способы оценивания результатов тестирования.

Глава 1. Элементы V I А и V I В группы периодической таблицы Менделеева.

 

Атомы элементов VI группы характеризуются двумя различными структурами внешнего электронного слоя содержащего либо шесть, либо одного или двух электронов. К первому типу, помимо кислорода, относится сера и элементы подгруппы селена (Se, Te, Po), ко второму — элементы подгруппы хрома (Cr, Mo, W).

Структура внешнего слоя атомов серы, селена и его аналогов придает им преимущественно неметаллический характер с максимальной отрицательной валентностью, равной двум. Эти элементы должны быть менее активными неметаллами, чем галогены (так как последним не хватает до устойчивой конфигурации лишь по одному электрону). Максимальную положительную валентность серы, селена и его аналогов можно ожидать равной шести, причём электроны должны отдаваться ими легче, чем стоящими в том же горизонтальном ряду галогенами.
Наличие во внешнем слое атомов лишь одного или двух электронов обуславливает металлический характер элементов подгруппы хрома. Вместе с тем их максимальная положительная валентность также должна быть равна шести.

Таблица 1. Электронное строение и физические свойства Элементов V I А и V I В группы периодической таблицы Менделеева

Поряд- ковый № Элемент Относитель- ная атомная масса Электронная конфигурация Атомный радиус, нм Э.О Степени окисления r г/см3
8 Кислород (O) 15,9994 [He] 2s22p4 0,066 3,5 -2, -1, +1, +2 1,2 (-183°C)
16 Сера (S) 32,06 [Ne] 3s23p4 0,105 2,6 -2, +2, +3, +4, +5, +6 2,07
34 Селен (Se) 78,96 [Ar] 3d104s24p4 0,116 2,01 -2, +4, +6 4,8
52 Теллур (Te) 127,60 [Kr] 4d105s25p4 0,143 1,9 -3, +3, +4, +5 6,68
84 Полоний (Po) 208,98 [Xe] 4f145d106s26p4 0,176 1,76 +2, +4 9,32

 

КИСЛОРОД

 Электронная структура кислорода 1s22s22p4.

Кислород — самый распространенный элемент [58,0% (мол. доли)] на Земле. Состоит из трех стабильных изотопов: 160 (99,759) % (мол. доли), 170 (0,037) и |80 (0,204). Получены также искусственные изотопы.

Подобно фтору, кислород образует соединения почти со всеми элементами (кроме гелия, неона и аргона). Поскольку по электроотрицательности кислород уступает только фтору, степень окисления кис­лорода в подавляющем большинстве соединений равна -2. Кроме того, кислород проявляет степени окисления +2 и +4, а также + 1 и -1 в соединениях со связью О—О.

Кислород можно получать различными химическими методами, и некоторые из них применяют для получения малых количеств чистого кислорода в лабораторной практике.           Электролиз. Один из методов получения кислорода – электролиз воды, содержащей небольшие добавки NaOH или H2SO4 в качестве катализатора: 2H2O = 2H2 + O2.

При этом образуются небольшие примеси водорода. С помощью разрядного устройства следы водорода в газовой смеси вновь превращают в воду, пары которой удаляют вымораживанием или адсорбцией.

 Термическая диссоциация. Важный лабораторный метод получения кислорода, предложенный Дж.Пристли, заключается в термическом разложении оксидов тяжелых металлов: 2HgO = 2Hg + O2. Пристли для этого фокусировал солнечные лучи на порошок оксида ртути. Известным лабораторным методом является также термическая диссоциация оксосолей, например хлората калия в присутствии катализатора – диоксида марганца:  2KCLO3 + MnO2 = 2KCl+3O2 Используются также способы термического разложения нитратов:  2KNO3 →2KNO2 + O2

Химическая активность кислорода определяется его способностью диссоциировать на атомы O, которые и отличаются высокой реакционной способностью. Только наиболее активные металлы и минералы реагируют с O2 c высокой скоростью при низких температурах. Наиболее активные щелочные (IA подгруппы) и некоторые щелочноземельные (IIA подгруппы) металлы образуют с O2 пероксиды типа NaO2 и BaO2. Другие же элементы и соединения реагируют только с продуктом диссоциации O2. В подходящих условиях все элементы, исключая благородные газы и металлы Pt, Ag, Au, реагируют с кислородом. Эти металлы тоже образуют оксиды, но при особых условиях.

Электронная структура кислорода (1s22s22p4) такова, что атом O принимает для образования устойчивой внешней электронной оболочки два электрона на внешний уровень, образуя ион O2–. В оксидах щелочных металлов образуется преимущественно ионная связь. Можно полагать, что электроны этих металлов практически целиком оттянуты к кислороду. В оксидах менее активных металлов и неметаллов переход электронов неполный, и плотность отрицательного заряда на кислороде менее выражена, поэтому связь менее ионная или более ковалентная.

О свойствах оксидов можно сделать несколько общих выводов:

1. Температуры плавления оксидов щелочных металлов уменьшаются с ростом атомного радиуса металла; так, tпл (Cs2O) < tпл (Na2O). Оксиды, в которых преобладает ионная связь, имеют более высокие температуры плавления, чем температуры плавления ковалентных оксидов: tпл (Na2O) > tпл (SO2).

2. Оксиды химически активных металлов (IA–IIIA подгрупп) более термически стабильны, чем оксиды переходных металлов и неметаллов. Оксиды тяжелых металлов в высшей степени окисления при термической диссоциации образуют оксиды с более низкими степенями окисления (например, 2Hg2+O = (Hg+)2O + 0,5O2 = 2Hg0 + O2). Такие оксиды в высоких степенях окисления могут быть хорошими окислителями.

3. Наиболее активные металлы взаимодействуют с молекулярным кислородом при повышенных температурах с образованием пероксидов: Sr + O2 = SrO2.

4. Оксиды активных металлов образуют бесцветные растворы, тогда как оксиды большинства переходных металлов окрашены и практически нерастворимы. Водные растворы оксидов металлов проявляют основные свойства и являются гидроксидами, содержащими OH-группы, а оксиды неметаллов в водных растворах образуют кислоты, содержащие ион H+.

5. Металлы и неметаллы A-подгрупп образуют оксиды со степенью окисления, соответствующей номеру группы, например, Li, Be и B образуют, BeIIO и B2IIIO3, а неметаллы IVA–VIIA подгрупп C, N, S, Cl образуют CIVO2, NV2O5, SVIO3, ClVII2O7. Номер группы элемента коррелирует только с максимальной степенью окисления, так как возможны оксиды и с более низкими степенями окисления элементов. В процессах горения соединений типичными продуктами являются оксиды, например: 2H2S + 3O2 = 2SO2 + 2H2O

Углеродсодержащие вещества и углеводороды при слабом нагревании окисляются (сгорают) до CO2 и H2O. Примерами таких веществ являются топлива – древесина, нефть, спирты (а также углерод – каменный уголь, кокс и древесный уголь). Типичные уравнения для процессов горения таковы:

а) древесина (целлюлоза):

(C6H10O5)n + 6nO2 =6nCO2 + 5nH2O + тепловая энергия

б) нефть или газ (бензин C8H18 или природный газ CH4):

CH4 + 2O2 = CO2 + 2H2O + тепловая энергия

в) спирт:

C2H5OH + 3O2 = 2CO2 + 3H2O + тепловая энергия

г) углерод (каменный или древесный уголь, кокс):

2C + O2 = 2CO + тепловая энергия

Вода (оксид водорода).Важность воды H2O как в лабораторной практике для химических реакций, так и в процессах жизнедеятельности требует особого рассмотрения этого вещества. Как уже упоминалось, при прямом взаимодействии кислорода и водорода в условиях, например, искрового разряда происходят взрыв и образование воды, при этом выделяется 143 кДж/(моль H2O).

Молекула воды имеет почти тетраэдрическое строение, угол H–O–H равен 1043. Связи в молекуле частично ионные (3%) и частично ковалентные с высокой плотностью отрицательного заряда у кислорода и соответственно положительных зарядов у водорода:

Из-за высокой прочности связей H–O ион водорода с трудом отщепляется от кислорода и вода проявляет очень слабые кислотные свойства. Многие свойства воды определяются распределением зарядов. Например, молекула воды образует с ионом металла гидрат:

Одну электронную пару вода отдает акцептору, которым может быть H+:

Молекулы воды связываются друг с другом в большие агрегаты (H2O)x слабыми водородными связями (энергия связи ~21 кДж)

Вода в такой системе водородных связей подвергается диссоциации в очень слабой степени, достигающей концентрации 10–7 моль/л. Очевидно, расщепление связи, показанное квадратными скобками, приводит к образованию гидроксид-иона OH и иона гидроксония H3O+:

Пероксид водорода.Другим соединением, состоящим только из водорода и кислорода, является пероксид водорода H2O2. Название «пероксид» принято для соединений, содержащих связь –O–O–. Пероксид водорода имеет строение асимметрично изогнутой цепи:

Пероксид водорода получают по реакции пероксида металла с кислотой

BaO2 + H2SO4 = BaSO4 + H2O2

Концентрированный раствор H2O2 может быть получен специальными методами дистилляции. Пероксид водорода используют как окислитель в двигателях ракет. Разбавленные растворы пероксида служат антисептиками, отбеливателями и мягкими окислителями.

2.2. Сера

Формы нахождения серы в природе разнообразны. Иногда она встречается в самородном состоянии, но основная ее масса связана с металлами в составе различных минералов, которые могут быть разбиты на две большие группы: сернистых и сернокислых соединений. Из минералов первого типа особое значение для технологии серы имеет пирит (FeS2 ). К минералам второго типа относится, например, гипс (CaSO4 . 2Н2 О).

Чистая сера представляет собой желтое кристаллическое вещество с плотностью около 2, плавящееся при 119°С и кипящее при 445°С. Она очень плохо проводит тепло и электричество. В воде сера нерастворима. Лучшим ее растворителем является сероуглерод (CS2 ) органических растворителях (спиртах, бензоле, сероуглероде и др.).

Химические свойства. Сера относится к числу, довольно активных неметаллов. Она хорошо горит в кислороде, образуя диоксид серы: S + О2 = SO2

При горении серы в кислороде и на воздухе образуется также триоксид серы, количество которого в отсутствие катализа незначительно. При пропускании хлора через расплавленную серу образуется монохлорид серы S2Сl2, который затем превращается в SCl2:

2 S + Сl2 = S2Cl2 (хлорид серы (I))

S2Cl2 + Cl2 = 2 SСl2 (хлорид серы (II))

Последнее соединение неустойчиво, поэтому при нагревании реакция сдвигается влево. При нагревании серы в атмосфере водорода образуется сероводород: S + Н2 = Н2S

Если смешать порошки серы и красного фосфора в мольном соотношении 2,5 : 1 и нагреть до начала реакции, то вся масса очень быстро превращается в темно-красную жидкость:

5 S + 2 Р = Р2S5 (сульфид фосфора (V))

С металлами сера взаимодействует в большинстве случаев при

нагревании, но с некоторыми металлами (например, ртутью) и при комнатной температуре: Zn + S = ZnS (сульфид цинка)

Нg + S = НgS (сульфид ртути (II))

Последняя реакция используется в лабораторной практике для связывания разлитой ртути, пары которой очень ядовиты. Для этого предполагаемое место нахождения мельчайших капелек ртути посыпают порошком серы.

Серу можно получить как из источников самородной серы, так и из ее соединений. В промышленности серу получают выплавкой самородной серы перегретым паром через скважины. Расплавленная сера выносится на поверхность, где ее разливают в формы.

В лаборатории серу можно получить из сульфида и сульфита натрия. Для этого нужно смешать их растворы в стехиометрическом соотношении и полученный раствор нейтрализовать соляной или серной кислотой:

2 Nа2S + Nа2SO3 + 6 НСl = 6 NаСl + 3 S + 3 Н2О

2 Nа2S + Nа2SO3 + 3 Н2SO4 = З Nа2SO4 + 3 S + 3 H2О

Сера выделяется в виде мелкодисперсного порошка, который при отстаивании осаждается. Практически серу в лаборатории получают очень редко.

Сероводород представляет собой бесцветный газ (т. пл. –86 СС, т. кип. –60 °С). Уже 1 ч. H2 S на 100 000 ч. воздуха обнаруживается по его характерному запаху (тухлых яиц). Сероводород весьма ядовит. Будучи подожжен на воздухе, он сгорает по одному из следующих уравнений:

2H2 S+ ЗО2 = 2H2 О + 2SO2 (при избытке кислорода)

2H2 S + O2 = 2H2 O + 2S (при недостатке кислорода)

сероводород является, сильным восстановителем. В водном растворе H2 S ведет себя как весьма слабая кислота. Средние соли этой сероводородной кислоты (с анионом S2-) называются сернистыми или сульфидами, кислые соли (с анионом HS) – кислыми сернистыми или гидросульфидами.

Сероводородная кислота (К1 = 9·10–8 и К2 = 4·10–13) несколько слабее угольной.

При внесении в крепкий раствор сульфида мелко растертой серы она растворяется с образованием соответствующего полисульфида (многосернистого соединения), например: (NH4 )2 S +( x– 1)S = (NH4 )2 Sx .

Сродство серы к галоидам по ряду F–Сl–Вr–J настолько быстро уменьшается, что ее йодистое производное получить вообще не удается. С остальными галоидами она более или менее легко соединяется. Из образующихся соединений наиболее интересна газообразная при обычных условиях шестифтористая сера (SF6 ). Она бесцветна, не имеет запаха и не ядовита. От других галоге–нидов серы SF6 отличается своей исключительной химической инертностью. Как газообразный изолятор, она находит применение в высоковольтных установках. Жидкая при обычных условиях хлористая сера (S2 CI2 ) используется в резиновой промышленности.

Заметное взаимодействие серы с кислородом наступает лишь при нагревании. Будучи подожжена на воздухе, она сгорает синим пламенем с образованием двуокиси по реакции:

S + O2 = SO2 + 71 ккал

Молекула O = S = O полярна (длина диполя 0,33 А).

Сернистый газ химически весьма активен. Характерные для него реакции можно разбить на три группы: а) протекающие без изменения валентности серы, б) связанные с ее понижением и в) идущие с ее повышением.

Процессом первого типа является прежде всего взаимодействие сернистого газа с водой, ведущее к образованию сернистой кислоты (H2 SO3 ). Последняя, будучи кислотой средней силы, вместе с тем малоустойчива. Поэтому в водном растворе сернистого газа одновременно имеют место следующие равновесия:

H2 O + SO2 < = > H2 SO4 < = > H· + HSO’3 < = > 2H· + SO’’3

При нагревании растворов сернистой кислоты SO2 улетучивается и приведенные выше равновесия смещаются влево. Кипячением раствора можно добиться полного удаления SO2 . Напротив, при прибавлении щелочей равновесия смещаются вправо (вследствие связывания ионов Н·) и жидкость, содержащая теперь уже соответствующие соли сернистой кислоты (называемые сернистокислыми), перестает пахнуть сернистым газом..

Соли H2 SO3 получают обычно взаимодействием SO2 с гидроокисями или карбонатами металлов в водной среде.

При накаливании сульфитов активных металлов они около 600°С разлагаются с образованием соответствующих солей серной и сероводородной кислот, например, реакции:

4K2 SO3 = 3K2 SO4 +K2 S

Процесс этот аналогичен образованию перхлоратов и хлоридов при накаливании хлоратов.

Наиболее характерны для производных четырехвалентной серы реакции, связанные с повышением ее валентности: и сама сернистая кислота и ее соли являются сильными восстановителями. Растворы их уже при стоянии на воздухе постепенно (очень медленно) присоединяют кислород:

2Na2 SO3 + О2 = 2Na2 SO4

Несравненно быстрее (практически моментально) протекает окисление сернистой кислоты и сульфитов при действии таких окислителей, как КМnО4 , Вr2 , J2 и т. п. В результате окисления образуется серная кислота или ее соль, например, по реакции:

J2 + Н2 О +Na2 SO3 = 2HJ + Na2 SO4

Наряду с кислородом сульфиты способны присоединять также серу, переходя при этом в соли серноватистой (иначе – тиосерной) кислоты по реакции, например:

Na2 SO3 + S = Na2 S2 O3

Как я в случае кислорода, присоединение серы идет медленно и для получения серноват истокислых солей (иначе – тиосульфатов) приходится реакционную смесь кипятить.

Серноватистой кислоте отвечает структурная формула:

Атомы серы в ней имеют разную валентность ( + 6 и –2). Это необходимо учитывать при составлении уравнений реакций, протекающих с участием H2 S2 O3 или ее солей.

Последнее применение основано на восстановительных свойствах гипосульфита, легко окисляющегося под действием хлора до серной кислоты:

Na2 S2 O3 + 4Cl2 + 5Н2 О = 2H2 SO4 + 2NaCl + 6HCl

Для самого сернистого газа процессы, ведущие к повышению валентности серы, протекают значительно труднее, чем для сернистой кислоты и ее солей. Наиболее важными из подобных реакций являются взаимодействия SO2 с хлором и кислородом.

С хлором сернистый газ соединяется только на прямом солнечном свету или в присутствии катализатора (камфора) по реакции

SO2 + Сl2 = >SO2 Cl2

с образованием хлористого сульфурила (SO2 CI2 ). Последний представляет собой бесцветную жидкость с резким запахом. Водой он разлагается (холодной–лишь медленно) с образованием серной и соляной кислот:

SO2 Cl2 + 2Н2 О – H2 SO4 + 2HCl

15) Если хлористый сульфурил (т. пл. –54 °С, т. кип. +69 °С) можно рассматривать как серную кислоту, в которой на хлор заменены оба гидроксила, то продуктом замещения только одного из них является хлорсульфоновая кислота:

Хлорсульфоновая кислота представляет собой бесцветную, дымящую на воздухе и резко пахнущую жидкость (т. пл. –80 °С, т. кип. 155 °С с разложением), бурно взаимодействующую с водой по реакции

SO2 (OH)Cl + H2 O = H2 SO4 +HCl

Получают ее обычно действием газообразного НСl на раствор SОз в серной кислоте: SO3 +HCl = SO2 (OH)Cl. Наряду с хлористым сульфурилом, хлорсульфоновая кислота находит применение при органических синтезах.

Молекула SОз имеет структуру плоского треугольника с атомом серы в центре. Трехокись серы характеризуется сильными окислительными свойствами:

при соприкосновении с ней фосфор воспламеняется, из йодистого калия выделяется свободный иод и т. д. С другой стороны, она является кислотным ангидридом, причем образование H2 SO4 из серного ангидрида (SO3 ) и воды сопровождается большим выделением тепла:

Н2 О + SO3 = H2 SO4 + 19 ккал

Чистая 100%–ная серная кислота (т. н. моногидрат) представляет собой бесцветную маслянистую жидкость, застывающую в кристаллическую массу при +10 °С.

Концентрированная H2 SO4 является довольно сильным окислителем, особенно при нагревании (восстанавливается обычно до SO2 ). Например, она окисляет HJ и частично НВr (но не НСl) до свободных галоидов. Окисляются ею и многие металлы–Cu, Hg и др. (тогда как золото и платина по отношению к H2 SO4 устойчивы). Например, взаимодействие с медью идет по уравнению:

Cu + 2H2 SO4 = CuSO4 + SO2 + 2Н2 О

Свободная надсерная кислота представляет собой бесцветные кристаллы, плавящиеся при 65°С (с разложением). Она обладает очень сильными окислительными свойствами и при соприкосновении обугливает не только бумагу, сахар и т. п., но и пара–строение надсерной кислоты выражается формулой HO–SO2 –О–О–SO2 –ОН, т. е. она содержит перекисную цепочку.

Пространственная структура отвечающего ей иона S2 O8 2–оказана на рис. 107. Каждая половина этого рисунка в отдельности соответствует строению сульфат–иона.

20) При взаимодействии H2 S2 O8 с концентрированной перекисью водорода по уравнению

H2 S2 O8 + H2 O2 = 2H2 SO5 образуется мононадсерная кислота, по своему строению отвечающая серной кислоте, в которой один гидроксил замещен на группу ООН. Она представляет собой бесцветные кристаллы (т. пл. 45°С с разложением). Мононадсерная кислота является еще более сильным окислителе м, чем надсерная, и взаимодействие ее с многими органическими веществами (например, бензолом) сопровождается взрывом. Соли H2 SO5 малоустойчивы. В них она фигурирует, как одноосновная кислота

 

2.3. Подгруппа селена.

Содержание селена в земной коре составляет 1·10–50 %, теллура – 1 ·10–7%, а полония – лишь 2 ·10–15%. Последний относится к наименее распространенным в природе элементам. Он радиоактивен и с химической стороны почти не изучен.

Основными источниками получения селена и теллура служат отходы сернокислотного производства (пыль каналов и пылевых камер, ил промывных башен) и осадки («шламы»), образующиеся при очистке меди электролизом. Ежегодная мировая выработка селена исчисляется сотнями, теллура – десятками тонн. 

При действии на них разбавленных кислот образуются селено–водород (H2Se) и теллуроводород (Н2Те). Оба они представляют собой бесцветные газы с характерными неприятными запахами. Растворимость их в воде примерно такая же, как у сероводорода, причем растворы показывают ясно выраженную кислую реакцию.

H2Se и Н2Те являются кислотами более сильными, чем уксусная (К = 2· 10–5). Оба соединения (особенно Н2Те) весьма неустойчивы и легко разлагаются. Кислородом воздуха они постепенно окисляются и в газообразном состоянии и особенно в растворе уже при обычных температурах. В общем восстановительные свойства характерны для H2 Se и Н2 Те еще более, чем для сероводорода.

Все галоидные соединения селена и теллура могут быть получены путем взаимодействия элементов. Известны следующие галогениды:

По своему характеру галогениды селена похожи на соответствующие производные серы, причем тип Э2 Г2 в данном случае менее, а тип ЭГ4 – более устойчив.

Галогениды теллура уже резко отклоняются по свойствам от производных серы. Так, TeF6 довольно легко разлагается водой, a TeJ4 образуется при совместном растирании элементов в присутствии воды (тогда как иодиды селена и серы вообще не получены).

При нагревании в токе воздуха селен и теллур сгорают с образованием двуокисей. Последние представляют собой бесцветные кристаллические вещества, сильно отличающиеся друг от друга по растворимости в воде: у SeO2 она весьма велика, у TeO2 очень мала.

Подобно SO2 , двуокиси селена и теллура являются кислотными ангидридами: при растворении их в воде образуются соответственно селенистая (H2 SeO3 ) и теллуристая (Н2 ТеО3 ) кислоты. Обе они диссоциированы несколько слабее сернистой.

Соли селенистой кислоты (селенистокислые, или селениты) могут быть получены нейтрализацией растворов H2 SeO3 , соли теллуристой (теллуристокиелые, или теллуриты) –растворением ТеО2 в щелочах. И те и другие, как правило, сходны по свойствам с соответствующими сульфитами.

В то время как для четырехвалентной серы восстановительные свойства характернее окислительных, для SeIVи TeIVимеет место обратное: они довольно легко восстанавливаются до элементарных Se и Те, например, по схеме:

Н2 ЭО3 + 2SO2 + Н2 О = 2H2 SO4 + Э

Напротив, селен и теллур переходят в шестивалентное состояние лишь под действием наиболее сильных окислителей.

Селенистая кислота (K1 = 2·10–3, K2 = 5·10–9) может быть получена по реакции:

3Se + 4HNO3 + H2 O = 3H2 SeO3 + 4NO. Ее окислительные свойства выражены не особенно сильно. Так, она окисляет J’, но не способна окислить Вr. Из солей Н2 SеО3 следует отметить малорастворимый селенит серебра – Ag2 SeO3 .

Теллуристая кислота (K1 = 2·10–3, K2 = 1·10–8) не была выделена индивидуальном состоянии. Ее окислительные свойства выражены слабее, чем у селенистой. Так, SO2 ею окисляется, но J' не окисляется. Амфотерность теллуристой кислоты проявляется при растворении ТеО2 в концентрированных сильных кислотах – происходит образование солей четырехвалентного теллура (например, TeO2 + 4HJ < = > TeJ4 + 2H2 O).

При окислении H2 SeO3 и H2 TeO3 , например, по схеме

2 ЭО3 + 2НСlО3 = 5Н2 ЭО4 + Сl2 + Н2 О

образуются соответственно селеновая (H2 SeO4 ) или теллуровая (Н2 Те04 ) кислота. Обе они представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде.

 

2.4. Подгруппа хрома.

 

Таблица 2. Электронное строение и физические свойства Элементов V I В группы периодической таблицы Менделеева

 

Поряд- ковый № Элемент Относительная Атомная масса Электронная конфигурация Атомный радиус, нм Э.О Степени окисления r г/см3
24 Хром (Cr) 52 [Ar] 3d54s1 0,125 1,56 +1,+2,+3, +4,+5,+6 7.2
42 Молибден (Mo) 95.9 [Kr] 4d55s1 0,135 1,3 +1,+2,+3, +4,+5,+6 10.2
74 Вольфрам (W) 183.9 [Xe] 4f145d46s2 0,141 1,4 +1,+2,+3, +4,+5,+6 19.3

 

 

По содержанию в земной коре хром (6 ·10–3 %), молибден (3·10–4 %) и вольфрам (6·10–4 %) относятся к довольно распространенным элементам. Встречаются они исключительно в виде соединений.

Основной рудой хрома является природный хромистый железняк (FеО·Cr2 O3). Из молибденовых руд наиболее важен минерал молибденит (MoS2), из руд вольфрама – минералы вольфрамит (xFeWO4 ·yMnWO4 ) и шеелит (CaWO4 ).

При получении элементов подгруппы хрома первой задачей является выделение их окислов. Для этого пользуются обычно следующими схемами процессов. Хромистый железняк сплавляют с содой в присутствии кислорода:

[4(FeO·Cr2 O3 ) + 8Na2 CO3 + 7O2 = 2Fe2 O3 + 8Na2 CrO4 + 8CO2 ]

после чего выделенный из сплава Na2 CrO4 переводят в Na2 Cr2 O7 по схеме

2Na2 CrO4 + H2 SO4 = Na2 SO4 + Na2 Cr2 O7

а последний восстанавливают до Сr2 О3 углем (Na2 Cr2 O7 + 2C = > Cr2 O3 + Na2 CO3 + CO).

Полученный из вольфрамита путем подобного же сплавления с содой по реакция:

4FeWO4 + 4Na2 CO3 + O2 = 4Na2 WO4 + 2Fe2 O3 + 4CO2

и

6MnWO4 + 6Na2 CO3 + O2 = 6Na2 WO4 + 2Mn3 O4 + 6CO2

вольфрамат натрия разлагают соляной кислотой и выделившуюся H2 WO4 нагревают до перехода ее в WO3 . Молибденит переводят в МоО3 обжигом на воздухе: 2MoS2 + 7O2 = 4SO2 + 2MoO3 . Как и в случае марганца, из руд Сr, Мо и W чаще выплавляют не чистые ме таллы, а их высокопроцентные сплавы с железом.

Для выделения элементарного хрома удобно исходить из смеси его окиси (Сr2 О3 ) с порошком алюминия. Начинающаяся при нагревании реакция идет по уравнению:

Сr2 О3 + 2Аl = l12 О3 + 2Cr

Молибден и вольфрам могут быть получены восстановлением их окислов при высоких температурах углем или водородом.

В компактном виде элементы подгруппы хрома представляют собой серозато–белые блестящие металлы.

По, отношению к воздуху и воде Сr, Мо и W при обычных условиях вполне устойчивы. Их основным потребителем является металлургическая промышленность, где эти металлы используются при выработке специальных сталей.

3) В обычных условиях все три металла заметно взаимодействуют лишь с фтором, но при достаточном нагревании более или менее энергично соединяются и с другими типичными металлоидами. Общим для них является отсутствие химического взаимодействия с водородом.

При переходе в подгруппе сверху вниз (Сr –> Мо –> W) химическая активность металлов уменьшается. Особенно наглядно сказывается эго на их отношении к кислотам. Хром растворим в разбавленных HCl и H2 SO4 . На молибден последние не действуют, но в горячей крепкой H2 SO4 металл этот растворяется. Вольфрам весьма устойчив по отношению ко всем обычным кислотам и их смесям (кроме смеси HF и HNO3). Перевод молибдена и вольфрама в растворимое состояние легче всего осуществляется путем сплавления с селитрой и содой по схеме:

Э + 3NaNO3 + Na2 CO3 = Na2 ЭO4 + 3NaNO + CO2

Для элементов подгруппы хрома известны соединения, отвечающие различным валентностям, вплоть до VI.

Наиболее характерны для элементов подгруппы хрома те производные, в которых они шестивалентны. Из отвечающих этой валентности трехокисей (ЭО3 ) при накаливании металлов на воздухе образуются лишь бесцветная МоO3 и светло–желтая WO3 . Темно–красная СrО3 может быть получена только, косвенным путем. Все эти трехокиси при обычных условиях тверды.

Будучи типичным кислотным ангидридом, СrО3 легко растворяется в воде с образованием характеризующейся средней силой хромовой кислоты – Н2 Сr04 . Хромовый ангидрид ядовит и является очень сильным окислителем. Уже около 200°С он разлагается по уравнению:

4СrО3 = 2Сr2 О3 + ЗО2

Напротив, МоО3 и WO3 выше 1000°С испаряются без разложения.

Растворимость МоO3 и WO3 в воде очень мала, но в щелочах они растворяются с образованием солей молибденовой и вольфрамовой кислот. Последние в свободном состоянии представляют собой почти нерастворимые порошки белого (Н2 МoО4 ) или желтого (H2 WO4 ) цвета. При нагревании обе кислоты легко отщепляют воду и переходят в соответствующие трехокиси.

В ряду Сr–Мо– W сила кислот Н2 ЭО4 быстро уменьшается. Большинство их солей малорастворимо в воде. Из производных чаще встречающихся металлов хорошо растворимы: хроматы лишь Na+, K+, Mg2+и Са2+, молибдаты и вольфраматы – только Na+и К+. Хромовокислые соли окрашены, как правило, в светло–желтый цвет иона CrO4 2–, молибденово– и вольфрамовокислые – бесцветны.

При взаимодействии СrО3 и газообразного хлористого водорода образуется хлористый хромил (СrО2 Сl2 ), представляющий собой красно–бурую жидкость (т. кип. 117°С). Соединения типа ЭО2 Сl2 (при обычных условиях твердые) известны также для Мо и W. С водой все они взаимодействуют по схеме:

ЭО2 Сl2 + 2Н2 О = > ЭО2 (ОН)2 + 2НСl

В случае хрома равновесие практически нацело смещено вправо, т. е. хлористый хромил (подобно SO2 CI2 ) является типичным хлорангидридом.

Производные Mo и W гидролизованы значительно меньше, что указывает на наличие у молибденовой и вольфрамовой кислот заметно выраженной амфотерности.

Продукты полного замещения кислорода трехокисей ЭО3 на галоид известны только для Мо и W.

Кроме кислот типа Н2 ЭО4 , для хрома и его аналогов существуют также кислоты, отвечающие общей формуле Н2 Э2 О7 и по строению аналогичные пиросерной кислоте. Наибольшее значение из них имеет двухромовая кислота (Н2 Сr2 07 ). Сама она известна только в растворе, но ее соли (двухромовокислые или бихроматы), особенно К2 Сr2 О7 («хромпик») и Na2 Cr2 07 ·2Н2 О. являются наиболее обычными хромовыми препаратами и исходными продуктами для получения остальных соединений этого элемента.

Подобно самому иону Сr2 О7 2–, большинство бихроматов имеет красно–оранжевую окраску. Растворимость их в общем выше, чем соответствующих хроматов. Данные для солей натрия и калия приведены на рис. 109. Растворы двухромовоки



2019-12-29 175 Обсуждений (0)
Типы заданий в тестовой форме («формы тестовых заданий» по В.С.Аванесову) 0.00 из 5.00 0 оценок









Обсуждение в статье: Типы заданий в тестовой форме («формы тестовых заданий» по В.С.Аванесову)

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (175)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)