Мегаобучалка Главная | О нас | Обратная связь


Выбор усилительного устройства



2019-12-29 232 Обсуждений (0)
Выбор усилительного устройства 0.00 из 5.00 0 оценок




Методика выбора усилительного устройства взята из /2/.

Структурная схема преобразования электрических сигналов в прямой цепи системы управления включает в себя два блока: информационный и силовой, который представляет собой усилитель мощности (рисунок 5).

 

 

 


Рисунок 5

 

Информационный блок предназначен для сбора и обработки информации о состоянии и функционировании системы управления и формирования управляющих сигналов. К блоку подходят сигнал рассогласования системы, сформированный из входного сигнала и сигнала основной обратной связи, а также сигналы местных обратных связей. Информационный блок содержит усилители, ограничители, логические устройства, демодуляторы, фильтры, сумматоры сигналов местных обратных связей, корректирующие устройства. В нашем случае информационный блок содержит фазочувствительный выпрямитель.

В свою очередь силовой блок может представлять собой усилитель мощности, работающий в линейном режиме, или импульсный усилитель мощности. Гораздо большее распространение в системах управления получили импульсные усилители мощности (ИУМ). Они используются в устройствах автоматики для регулирования большой электрической мощности при управлении исполнительными устройствами систем управления. ИУМ, выполненный на управляемых ключах, обеспечивает передачу энергии от источника питания к нагрузке. Структурная схема ИУМ представлена на рисунке 6.

 

 


Рисунок 6

 

Импульсный модулятор преобразует непрерывный сигнал в импульсный. В случае использования силовых транзисторных ключей применяется чаще всего широтно-импульсный модулятор.

Формирователь импульсов (ФИУ) представляет собой предварительный усилитель мощности, обеспечивающий переключение ключей, однако этим не исчерпываются его функции. Здесь импульсы формируются не только по амплитуде, но и по форме, выполняются интеллектуальные функции по диагностике блока силовых ключей и их защите. Кроме того, в этом устройстве осуществляется гальваническая развязка маломощной и силовой частей системы управления.

Блок силовых ключей может содержать один или более ключей в зависимости от выбранной схемы включения исполнительного элемента (полумостовая и мостовая).

В нашем случае для управления двигателем постоянного тока с учетом реверса используется мостовая схема включения, изображенная на рисунке 7:

 

Рисунок 7

 

Мостовая схема включения двигателя постоянного тока содержит один источник питания и четыре ключа. Ключи открываются попарно: VT1 и VT4, VT2 и VT3. При этом ток через двигатель течет, то в одном, то в другом направлении. Диоды VD1-VD4 осуществляют шунтирование нагрузки на интервале выключенного состояния ключа.

Электродвигатель представляет собой RL – нагрузку. Будем полагать, что постоянная времени RL – нагрузки  существенно больше периода коммутации транзистора . Это позволяет считать изменения тока индуктивности  практически линейными, а сами эти изменения существенно меньшими среднего значения тока в нагрузке. Напряжение на нагрузке при этом имеет прямоугольную форму. Регулирование мощности осуществляется с помощью регулирования относительной длительности выходных импульсов, то есть изменением коэффициента заполнения .

В третьем импульсном режиме питание нагрузки осуществляется прямоугольным переменным напряжением. В этом случае существуют интервалы, на которых напряжение в нагрузке равно нулю. На рисунке 8 показаны временные диаграммы напряжения нагрузки.

 

Рисунок 8

 

Данный режим имеет практическое значение при  и , то есть для случая, когда постоянная составляющая напряжения нагрузки равна нулю. При этом осуществляется регулирование мощности первой выходного напряжения. Разложив в ряд напряжение, форма которого показана на рисунке 5, получим выражение первой гармоники выходного напряжения:

 

,

 

где .

В третьем ИР частота первой гармоники напряжения и тока в нагрузке равна частоте следования импульсов питающего напряжения.

Рассмотрим более подробно структурную схему, показанную на рисунке 5. Дальнейший расчет ШИП на полевых транзисторах проводится по блокам, согласно структурной схеме и временным диаграммам работы широтно-импульсного преобразователя с ключами на полевых транзисторах для реализации третьего ИР управления двигателем постоянного тока, представленной на рисунке 9.

 

 

 

ГТИ – генератор треугольных импульсов; CC1, СС2 – схемы сдвига; К1, К2 – компаратор; ФИУ1, ФИУ2 – формирователь импульсов управления; ПТ1, ПТ2 – полевой транзистор

Рисунок 9

 

ГТИ формирует треугольные импульсы заданной частоты и амплитуды. Первая схема сдвига уровней СС1 осуществляет сдвиг выходного сигнала вверх на , равный в нашем случае 2 В. Вторая схема сдвига уровней СС2 осуществляет сдвиг выходного сигнала вниз на . На неинвертирующий вход компараторов К1, К2 подается входной сигнал, равный 0,68 В. После компараторов сигнал обладает некоторым отрицательным значением. Чтобы эту часть исключить, а также для окончательного формирования импульсов, сигнал подают на формирователь импульсов управления. После чего сигналы поступают на затворы полевых транзисторов.

Блок №1: Генератор треугольного напряжения

Схема генератора треугольного напряжения представлена на рисунке 10:

 

Рисунок 10

 

Генератор состоит из неинвертирующего триггера DA2 и инвертора DA3, который интегрирует постоянное напряжение триггера. Когда выходное напряжение интегратора достигает порога срабатывания триггера, то выходное напряжение последнего изменяет полярность и конденсатор начинает перезаряжаться, пока не достигнет другого порога срабатывания триггера противоположного знака.

Амплитуда выходного напряжения зависит от порога срабатывания триггера:

 

,                                                                        (2)

 

где  – это напряжение насыщения операционного усилителя. Период колебаний равен удвоенному времени, в течение которого выходное напряжение интегратора изменится от  до :

 

                                                                           (3)

 

Используя формулу (3) для расчёта периода колебаний, можно рассчитать частоту сигнала, идущего с генератора.

При этом учитывается, что частота с генератора должна не менее чем в 10 раз превышать частоту входного сигнала:

Т.к. частота входного сигнала 50 Гц, то частота с генератора должна быть 500 Гц. Следовательно, период колебаний равен  с. Напряжение срабатывания  В. Амплитуда выходного напряжения должна быть равна  В. Выберем элементную базу для генератора:

Пусть  кОм, тогда по формуле (2)

 

 кОм

 

Пусть Ф, тогда по формуле (3)  кОм.

Выбирается резистор с номинальным сопротивлением 3,3 кОм.

Генератор выберем на микросхеме К140УД7, справочные данные которой приведены в таблице 3

 

Таблица 3

Обозначение Тип UПИТ, В Ток питания, мА UВЫХ, В
DA2 К140УД7 5–20 3 11

 

Справочные данные на выбранный конденсатор приведены в таблице 4.

 

Таблица 4

Обозначение Тип Емкость, мкФ Отклонение, % Номинальное напряжение, В
С12 К73–11 5,1 20 10

 

Справочные данные на резисторы приведены в таблице 5.

 

Таблица 5

Обозначение Тип Сопротивление, кОм Отклонение, % Мощность, Вт
R4 С2–33H 1 5 0,125
R3 C2–33H 33 5 0,125
R5 С2–33H 3,3 5 0,125
R6 C2–33H 1 5 0,125

 

Блок 2: Повторитель напряжения.

Нагрузка оказывает влияние на сигнал, идущий с генератора, вызывая смещение. Во избежание этого после генератора треугольных импульсов ставят повторитель напряжения (рисунок 11).

Выходной сигнал с повторителя напряжения будет аналогичен выходному сигналу с генератора.

Повторитель выберем на микросхеме К140УД7, справочные данные которой приведены в таблице 6.


Рисунок 11

 

Таблица 6

Обозначение Тип UПИТ, В Ток питания, мА UВЫХ, В
DA11 К140УД7 5–20 3 11

 

Блок №3: Схема сдвига уровня

Схема сдвига уровня выходного сигнала представлена на рисунке 12.

 

Рисунок 12


Для расчета данной схемы нам понадобится значение сигнала, который подается на неинвертирующий вход компаратора (Блок №5) с сельсинов. Найдем его значение. Т.к. сигнал с сельсинов равен 51 В (это приходится на 900), тогда, если учесть, что ошибка следования равна 1,20, то входной сигнал будет равен  В.

Рассчитаем коэффициент заполнения .

 

,                                                                                       (4)

 

где  – длительность импульса, равная

- период, равный

f – частота напряжения возбуждения сельсинов, равная 50 Гц,

 

,

 

где U1 – напряжение снимаемое после схемы сдвига, численно равное

 с

Подставив все значения в (4), получим:

 

 

На компаратор приходит два сигнала. На неинвертирующий вход компаратора подают входной сигнал , равный 0,68 В. Сигнал, идущий на инвертирующий вход компаратора необходимо «раскачать» до величины максимального значения входного сигнала и сместить одним суммирующим усилителем в положительную область, а другим в отрицательную. Вот для этого нам и нужна схема сдвига уровня. Схема основана на суммирующем усилителе, для которого организуется смещение от источника постоянного напряжения U = 2 В. Выходное напряжение суммирующего усилителя определяется по формуле:

 

,

 

где  – напряжение, подаваемое на первый вход суммирующего усилителя с выхода повторителя напряжения,

- напряжение, подаваемое на второй вход суммирующего усилителя от источника постоянного напряжения,

- коэффициент усиления напряжения с первого входа,

- коэффициент усиления напряжения со второго входа.

В нашем случае , , а на выходе мы должны получить . Примем значение первого коэффициента усиления , после этого найдем значение  из выражения . Подставив значения, получим: .

Рассчитаем значения резисторов по формулам:

 

 

 


Примем значение резистора КОм, тогда  КОм, а  КОм. Значения резисторов и  равны значениям резисторов  и  соответственно.

Усилители выберем на микросхемах К140УД7, справочные данные которых приведены в таблице 7.

 

Таблица 7

Обозначение Тип UПИТ, В Ток питания, мА UВЫХ, В
DA9 К140УД7 5–20 3 11
DA10 К140УД7 5–20 3 11

 

Справочные данные на резисторы приведены в таблице 8:

 

Таблица 8

Обозначение Тип Сопротивление, кОм Отклонение, % Мощность, Вт
R17 С2–33H 4,3 5 0,125
R18 C2–33H 4,3 5 0,125
R19 С2–33H 22 5 0,125
R22 C2–33H 4,3 5 0,125
R24 C2–33H 22 5 0,125
R20 С2–33H 4,3 5 0,125

 

Блок №4: Фазочувствительный выпрямитель

Для того чтобы извлечь низкочастотный сигнал из модулированного колебания нельзя воспользоваться фильтрами, так как низкочастотный сигнал входит в состав модулированного колебания не как слагаемое, а как сомножитель. Нелинейное преобразование модулированного колебания, используемое для получения низкочастотного сигнала, реализуется в демодуляторах. В системах управления в качестве демодуляторов применяются выпрямители, у которых полярность выходного напряжения должна зависеть от фазы, а величина от амплитуды входного напряжения. Такие демодуляторы называются фазочувствительными выпрямителями (ФЧВ). ФЧВ представляет собой управляемый двухполупериодный выпрямитель, схема которого представлена на рисунке 13.

 

Рисунок 13

 

ФЧВ имеют два входа: сигнальный и управляющий (коммутирующий). Если на сигнальный вход подано гармоническое переменное напряжение , а на управляющий – напряжение той же частоты , то напряжение на выходе выпрямителя определяется соотношением:

 

 

где  – постоянный коэффициент;

- фазовый сдвиг между напряжениями и .

 

Рисунок 14


На первой временной диаграмме показан входной амплитудно-модулированный сигнал. Огибающая показана пунктиром. На второй временной диаграмме показан выходной сигнал ФЧВ, представляющий собой выпрямленное напряжение, меняющее полярность при смене фазы входного сигнала на 180 градусов. Ключ работает синхронно с входным сигналом. Если возникает фазовый сдвиг между входным сигналом и сигналом управления ключом, то среднее значение выпрямленного сигнала уменьшается. При сдвиге на 90 градусов среднее значение становится равным нулю.

Состояние ключа определяет работу схемы. Рассмотрим два варианта:

1. Ключ замкнут. На не инвертирующем входе усилителя формируется ноль, при этом ток через резистор  отсутствует. Схема работает как инвертирующий усилитель. Выходной сигнал определяется по формуле:

 

 

2. Ключ разомкнут. Сигнал идёт на не инвертирующий вход. При этом напряжение . Через резистор  тока нет, и усилитель работает как неинвертирующий.

 

 

Для того чтобы коэффициенты передачи в обоих случаях были одинаковыми необходимо выполнить условие:

 


Недостаток схемы: различное входное сопротивление при замкнутом и разомкнутом состояниях ключа (либо равно бесконечности, либо ).

В нашем случае фазочувствительный выпрямитель будет работать как повторитель, поэтому в схему не будем включать резистор . Из этого также следует, что резистор . Примем их равными 10 КОм.

Для дальнейшей работы с получившимся сигналом его следует отфильтровать. Для этого после ФЧВ поставим фильтр нижних частот.

В качестве элементной базы для ФЧВ выберем:

– Усилители на микросхемах К140УД7, справочные данные которых приведены в таблице 9.

 

Таблица 9

Обозначение Тип UПИТ, В Ток питания, мА UВЫХ, В
DA1 К140УД7 5–20 3 11
DA2 К140УД7 5–20 3 11

 

– резисторы, характеристики которых приведены в таблице 10:

 

Таблица 10

Обозначение Тип Сопротивление, кОм Отклонение, % Мощность, Вт
R1 С2–33H 10 5 0,125
R2 C2–33H 10 5 0,125
R4 С2–33H 10 5 0,125

 

– стабилитроны, характеристики которых приведены в таблице 11:

 

Таблица 11

Обозначение Тип UСТ. НОМ, В IСТ, мА RСТ, ОМ
VD1 2C156A 5.6 10 46
VD2 2C156A 5.6 10 46

 


В качестве переключающего устройства используется микросхема КР590КН4, параметры которой приведены в таблице 12

 

Таблица 12

Тип UКОМ, В RЗАКР.КЛ, Ом t, нс В В UПИТ, В
КР590КН4 ±15 75 150 4–15 0–0,8 ±15

 

Блок №5: Компараторы напряжения

Компаратор служит для сравнения двух сигналов, один из которых является, как правило, опорным. Выходной сигнал компаратора принимает только два значения. Положительный или отрицательный уровень выходного напряжения показывает, какой из сравниваемых сигналов больше в данный момент времени. Схема компаратора напряжения приведена на рисунке 15.

 

Рисунок 15

 

В данной схеме компаратора на неинвертирующий вход ОУ подаем опорное напряжение (входной сигнал ), которое называется напряжением срабатывания компаратора. Это приводит к тому, что напряжение на выходе будет переключаться от  до (напряжение насыщения усилителя) и обратно, когда входной сигнал (сигнал с выхода схемы сдвига уровня) проходит через значение, равное опорному . Если входной сигнал больше напряжения срабатывания, то на выходе компаратора наблюдается отрицательное напряжение, если меньше – положительное.

Усилители выберем на микросхеме К140УД7, справочные данные которой приведены в таблице 13.

 

Таблица 13

Обозначение Тип UПИТ, В Ток питания, мА UВЫХ, В
DA11 К140УД7 5–20 3 11
DA13 К140УД7 5–20 3 11

 

Блок №6: Инвертор напряжения

Т.к. для работы полевых транзисторов, которые были выбраны для управления двигателем постоянного тока, на затвор необходимо подавать только положительное напряжение, то на выход одного из компараторов (с выхода которого поступает отрицательный импульс) необходимо поставить инвертор напряжения. Схема изображена на рисунке 16.

 

Рисунок 16

 

Сделаем его повторителем, т.е. резисторы  и будут равны. Примем их равными 10 КОм.

Выберем элементную базу.

Усилители сделаем на микросхеме К140УД7, справочные данные которой приведены в таблице 14

 

Таблица 14

Обозначение Тип UПИТ, В Ток питания, мА UВЫХ, В
DA1 К140УД7 5–20 3 11

 

Выберем резисторы С2–33Н, характеристики которых приведены в таблице 15:

 

Таблица 15

Обозначение Тип Сопротивление, кОм Отклонение, % Мощность, Вт
R1 С2–33H 10 5 0.125
R2 C2–33H 10 5 0.125

 

Блок 7: Моделирование схемы формирования импульсного управления и схемы включения двигателя постоянного тока на полевых транзисторах

ФИУ – часть системы управления преобразователя, которая формирует логику формирования сигналов управления силовыми ключами, с последующим усилением по мощности. В структуре ФИУ есть информационно-логическая часть и усилитель импульсов, который согласовывает информационно-логическую часть с управляющей цепью силового ключа.

В нашем случае ФИУ будет состоять из четырех драйверов TLP250, четырех инверторов с открытым коллектором 530ЛН2 и двух диодов.

Сигнал, идущий с ШИМ имеет напряжение 14 В, для отпирания ключей на полевых транзисторах этого напряжения недостаточно, поэтому сигнал усиливают по напряжению до 24 В. Для перезаряда входной емкости полевого транзистора нужен более высокий уровень тока, чем у сигнала, поступающего с ШИМ.


Рисунок 17

 

Для этого сигнал усиливают по току с помощью комплиментарной пары транзисторов, находящейся внутри драйвера. Транзисторы VT1 – VT4 являются мощными полевыми транзисторами с изолированным затвором. У таких транзисторов подложка соединена с истоком внутри корпуса. Они обладают односторонней проводимостью, так как между истоком и стоком у них формируется диод (VD3 – VD6). Транзисторы VT1 – VT4 управляется положительным напряжением .

Выбираем транзисторы VT1 – VT4 исходя из соотношения:

 

, ,

 

где - ток стока полевого транзистора,

- ток нагрузки (пусковой ток электродвигателя постоянного тока),

- напряжение сток-исток,

- напряжение питания.

В данном случае А. По заданным параметрам выберем мощный полевой транзисторс изолированным затвором и каналом n-типа, параметры которого приведены в таблице 16.


Таблица 16

Обозначение Тип UСИ, В UЗИ, В IС, А
VT1 2П701А 500 30 5–17
VT2 2П701А 500 30 5–17
VT3 2П701А 500 30 5–17
VT4 2П701А 500 30 5–17

 

Сигнал после ШИМ обладает некоторым отрицательным значением. Чтобы эту часть сигнала исключить используются диоды VD1 и VD2. Для их реализации выберем диоды 2Д510А, параметры которых приведены в таблице 17.

 

Таблица 17

Обозначение Тип UОБР, В IПР.MAX, мА
VD1 2Д510А 70 0,3
VD2 2Д510А 70 0,3

 

Диоды VD3-VD6 осуществляют шунтирование нагрузки на интервале выключенного состояния ключа. В качестве элементной базы нам подойдут диоды Д233Б, параметры которых приведены в таблице 18.

 

Таблица 18

Обозначение Тип UОБР, В IПР.MAX, мА
VD3 Д233Б 300 5
VD4 Д233Б 300 5
VD5 Д233Б 300 5
VD6 Д233Б 300 5

 

Также к элементной базе ФИУ относятся высокоскоростные драйверы транзисторов с изолированным затвором TLP250, параметры которых приведены в таблице 19.

 


Таблица 19

Тип Характеристика входного узла Нагрузочная способность выходной цепи, А Нагрузочная способность входной цепи, мА Задержка передачи сигнала, мкс Характеристика выходного узла Напряжение питания, В
TLP250 светодиод 0,5 5 0,2 эмиттерные повт. 10 – 35
TLP250 светодиод 0,5 5 0,2 эмиттерные повт. 10 – 35
TLP250 светодиод 0,5 5 0,2 эмиттерные повт. 10 – 35
TLP250 светодиод 0,5 5 0,2 эмиттерные повт. 10 – 35

 

И конденсатор в цепи драйвера емкостью 0,1 мкФ. Справочные данные на выбранный конденсатор приведены в таблице 20.

 

Таблица 20

Обозначение Тип Емкость, мкФ Отклонение, % Номинальное напряжение, В
С К73–11 0,1 20 10

 

Т.к. нагрузочная способность входной цепи 5 мА, а напряжение на входе 5 В, то выбираем резисторы , , ,  равными 1 кОм, резисторы ,  защищают диоды от пиковых значений токов. Величина их должна быть небольшая (приблизительно 100–200 Ом).

Параметры резисторов приведены в таблице 21.

 

Таблица 21

Обозначение Тип Сопротивление, кОм Отклонение, % Мощность, Вт
R1 С2–33H 0,1 5 0,125
R2 C2–33H 0,1 5 0,125
R3 С2–33H 1 5 0,125
R4 C2–33H 1 5 0,125
R5 С2–33H 0,1 5 0,125
R6 C2–33H 0,1 5 0,125
R7 С2–33H 0,1 5 0,125
R8 C2–33H 0,1 5 0,125
R9 С2–33H 1 5 0,125
R10 C2–33H 1 5 0,125

 

 




2019-12-29 232 Обсуждений (0)
Выбор усилительного устройства 0.00 из 5.00 0 оценок









Обсуждение в статье: Выбор усилительного устройства

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (232)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.014 сек.)