Мегаобучалка Главная | О нас | Обратная связь


Действие сосредоточенной силы (основная задача) Какое предположение делается в отношении зоны, расположенной непосредственно у сосредоточенной силы?





Поставленная задача для упругого ( а следовательно, и любого линейно деформи-рованного ) полупространства впервые была полностью решена проф. Ж.. Буссинеском

(1885), а определение напряжений для площадок, параллельных ограничивающей полупространство плоскости,-проф.В.Кирпичевым и проф.Н.А. Цытовичем (1923-1934).

Задача определить напряжения σz, τzy,τzx, как наиболее часто используемых в расчетах.

 

Для упрощения расчетов определяют напряжения σR в точке М с полярными координатами R и β. Окончательный результат, который полностью совпадает с решением Буссинеска, принимают как постулат, что напряжение σR пропорционально cosβ и обратно пропорционально квадрату расстояния от точки приложения сосредоточенной силы R2.

Предполагается, что сплошная среда является бесконечно прочной и не может разрушаться. Ж.Буссинеск, чтобы обойти это обстоятельство, не рассматривал небольшую зону, непосредственно находящуюся у сосредоточенной силы.

Таким образом: ; для перемещений:

где: -коэф .линейно деформируемого полупространства; Е0 0-модули общей и поперечной (аналогичный коэф. Пуассона) деформаций

А- некоторый коэффициент, определяемый из условия равновесия:

Подставляя А в формулу получим: .


 

Как практически определяются напряжения в инженерной практике от действия сосредоточенной нагрузки.

Согласно рис.в вопросе 51 точка М вполне определяется двумя её координатами Zи r. После некоторых преобразований будем иметь:

Для облегчения расчетов служит таблица (Ц. стр79). Величина К определяется для ряда значений r/z.

 

Как следует просуммировать напряжения, если действует несколько сосредото-ченных сил?

Если на поверхности массива приложено несколько сосредоточенных сил Р1, Р2, Р3…,

то сжимающие напряжения в любой точке массива для горизонтальных площадок, параллельных ограничивающей плоскости, может быть найдено простым суммированием, так как вывод формулы в вопросе 52 основан на прямой пропорциональности между напряжениями и деформациями:



.

 

Какое условие накладывается на эпюры напряжений для выполнения условия равновесия?

Для выполнения условия равновесия необходимо, чтобы в случае пространственной задачи объем эпюры σz при заданной постоянной величине z равнялся бы действующей сосредоточенной силе.

В случае плоской задачи это условие сохраняется, однако оно упрощается, и поэтому площадь эпюры σz при постоянной величине z должна быть равна внешней нагрузке.

 





Читайте также:


Рекомендуемые страницы:


Читайте также:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (967)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.003 сек.)