Количественная оценка степени идентичности модели и исследуемого объекта
Известно, что при моделировании вероятных моделей заведомо не известная ни степень, ни форма зависимости между отдельными входными переменными, а также между входными и выходными переменными. Конечно, что мы хотим построить модель с учетом не всех переменных, а с учетом по возможности меньшей их количества. Однако, это количество входных переменных должна определять исходную переменную с точностью не больше допустимой погрешности. После выбора определенного числа входных переменных и построения по ним модели возникают задачи определения степени соответствия модели к реально исследуемого объекту. Решение такой задачи имеет большое практическое значение, так как разрешает определить правильность выбора тех или других переменных. Пусть вектор входных переменных имеет вид:
а вектор выходных переменных:
(1) и кривая от Х2 носит название среднеквадратичной регрессии. Базируясь на парных результатах
В этом выражении учитывается общее влияние на выходную переменную Yj всех учтенных P входных переменных. Для того чтобы задача установления числа переменных P в выражении (2) стала определенной, необходимо задать некоторые требования к выходных переменных Yj. Обычно в качестве такого указателя рядом с мат. ожиданием используется дисперсия или корреляционная функция, которая заданная раньше. Дисперсия выходной переменной характеризуют точность, а корреляционная функция - те связи, которые присущи выходным переменным. Общая дисперсия выходных переменных состоит из двух слагаемых:
Первое слагаемое вызван влиянием P переменных, второй - учитывается влияние на формирование выходной переменной (n-p) переменных которые осталось. Выходная переменная из выражения (3) должна удовлетворять соотношение
где Dз – заданная дисперсия Очевидно, что если условие (4) выполняется при P=1, то достаточно модели, построенной с учетом одной переменного. Практически может быть такой случай, если введение новой переменной не приводит к достижению заданной цели. В таком случае необходимо изменить требования к представлению исходных переменных. Постановка задачи здесь должна быть связана с поиском оптимизации, то есть использование такого критерия, который обеспечит необходимые представления. В конечном случае роль пойдет о количественной оценке идентичности модели и объекта. Таких критериев можно подобрать немало, мы же используем дисперсионную меру: если P=n, то Q=1 P≠n, nj 0<Q<1 Объекты, для которых Q=1 называются регулярными или детерминированными (полностью определенными) Q=0 - нерегулярные, стахостическими, случайные. Оценка адекватности модели может быть: 1) Оценка адекватности концептуальной модели 2) Оценка достоверности ее реализации. Читайте также: Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Почему стероиды повышают давление?: Основных причин три... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (453)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |