Мегаобучалка Главная | О нас | Обратная связь


Характеристические уравнения для дифференциальных уравнений второго порядка



2015-11-20 1284 Обсуждений (0)
Характеристические уравнения для дифференциальных уравнений второго порядка 0.00 из 5.00 0 оценок




Тема 1. Классификация дифференциальных уравнений второго порядка в частных производных.

Для упрощения записей ограничимся случаем двух переменных.

Пусть - искомая функция. Ограничиваясь случаем производных, не выше второй степени будем считать заданным некий функционал

,

где ; ; ; ; .

 

1.1 Линейное дифференциальное уравнение второго порядка

в частных производных.

Введем более простое уравнение:

(1.1)

Оно линейно по старшим производным, если коэффициенты

зависят только от ( ) и не зависят от .

Введем уравнение

(1.2)

Если – зависят только от ( ), то уравнение (1.2) линейно.

Если const, то уравнение называется линейным дифференциальным уравнением (ДУ) с постоянными коэффициентами.

Если , то (1.2) – линейное однородное уравнение. Нашей дальнейшей целью является упрощение формы ДУ путем подбора других систем координат.

, где

Новые координаты выбираются так, чтобы соответствующий определитель

.

Лемма 1. При переходе к новой системе координат линейное уравнение остается линейным. Нужно доказать, что (1.1) перейдет в некоторое линейное уравнение:

(1.1’)

Три типа дифференциальных уравнений второго порядка в частных производных

Для уравнений (1.1),(1.1’) введем некоторую величину, называемую дискриминантом

Для уравнения (1.1) , (1.4)

Для уравнения (1.1’) . (1.4’)

Лемма 2. При смене системы координат знак не меняется, если определитель преобразования не обращается в ноль:

.

Если в какой-то области дискриминант имел определенный знак, то он сохранит тот же знак в области, полученной из данной преобразованием координат,при .

Будем называть уравнения в той области, где

– гиперболическими,

– параболическими,

– эллиптическими.

Рассмотрим условия, когда обращаются в ноль.

Характеристические уравнения для дифференциальных уравнений второго порядка

Новые координаты приводят к изменению коэффициентов

,

.

Лемма 3. Если является частным решением уравнения

, (1.5)

то , где c = const является общим интегралом уравнения:

. (1.6)

Лемма 4. Если является общим интегралом уравнения (1.6), то - частное решение (1.5).

Рис. 3
Уравнение (1.6) – характеристическое уравнение для (1.1). Зная общий интеграл для характеристического уравнения, можно так подобрать новую переменную , где - общий интеграл для (1.6), чтобы .

Аналогичным образом, если у нас есть еще один общий интеграл для (1.6),

t wx:val="Cambria Math"/><w:i/><w:sz w:val="28"/><w:sz-cs w:val="28"/></w:rPr><m:t>C</m:t></m:r></m:e><m:sub><m:r><w:rPr><w:rFonts w:ascii="Cambria Math" w:fareast="Times New Roman" w:h-ansi="Cambria Math"/><wx:font wx:val="Cambria Math"/><w:i/><w:sz w:val="28"/><w:sz-cs w:val="28"/></w:rPr><m:t>2</m:t></m:r></m:sub></m:sSub></m:oMath></m:oMathPara></w:p><w:sectPr wsp:rsidR="00000000"><w:pgSz w:w="12240" w:h="15840"/><w:pgMar w:top="1134" w:right="850" w:bottom="1134" w:left="1701" w:header="720" w:footer="720" w:gutter="0"/><w:cols w:space="720"/></w:sectPr></w:body></w:wordDocument>"> ,то его примем за новую переменную, чтобы .

Для характеристического уравнения

получаем

1) Для гиперболических уравнений ( ) существуют 2 решения (2 общих интеграла) для (1.6).

Выбираем , .

Тогда можем обеспечить уничтожаемость и .

2) Для параболических уравнений ( имеется одно решение (один общий интеграл) для (1.6).

Выберем его за одну новую переменную , исключается только или .

3) Для эллиптических уравнений есть два комплексных решения характеристического уравнения.

За новые переменные можно взять их действительную и мнимую части.



2015-11-20 1284 Обсуждений (0)
Характеристические уравнения для дифференциальных уравнений второго порядка 0.00 из 5.00 0 оценок









Обсуждение в статье: Характеристические уравнения для дифференциальных уравнений второго порядка

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1284)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)