Мегаобучалка Главная | О нас | Обратная связь


Нелогичное развитие: в трясине математического анализа



2015-11-23 589 Обсуждений (0)
Нелогичное развитие: в трясине математического анализа 0.00 из 5.00 0 оценок




 

Начинать исследование можно по-разному. Все равно начало почти всегда оказывается весьма несовершенной, нередко безуспешной попыткой. Есть истины, как страны, наиболее удобный путь к которым становится известным лишь после того, как мы испробуем все пути.

Кому-то приходится, рискуя собой, сходить с проторенной дороги, чтобы указать другим правильный путь… На пути к истине мы почти всегда обречены совершать ошибки,

Дени Дидро

 

Математический анализ, ядро которого составляет дифференциальное и интегральное исчисление — самая тонкая область всей математики, — был построен на совсем не существующих логических основаниях арифметики и алгебры и на не вполне ясных основах евклидовой геометрии. Если вспомнить о замеченных нами недостатках в сравнительно простых разделах математики, то нетрудно представить себе, какого напряжения сил и способностей потребовало от математиков создание основной системы понятий и логической структуры дифференциального и интегрального исчисления. Именно так и обстояло дело в действительности.

В основе математического анализа лежит понятие функции. Не стремясь к особой строгости, функцию можно описать как зависимость между переменными. Поясним это на простом примере. Если, скажем, с крыши дома бросить мяч, то и расстояние, проходимое им в процессе падения, и время падения будут возрастать. Расстояние и время — переменные, а функция, связывающая расстояние и время (если пренебречь сопротивлением воздуха), определяется формулой d = 4,9t2, где t — время падения (в секундах), а d — расстояние (в метрах), пройденное мячом за время t с момента падения.

Происхождение любой важной идеи всегда можно проследить, углубляясь в историю на десятилетия, если не на века. В полной мере это относится и к понятию функции. Тем не менее явный смысл понятие функций обрело лишь в XVII в. Мы не будем здесь вникать в подробности этого процесса. Для нас гораздо важнее другое: хотя понятие функции весьма «прямолинейно» и, казалось бы, не таит в себе никаких «подводных камней», но даже и простейшие функции охватывают все типы вещественных чисел. Так, в приведенном нами примере мы могли бы поинтересоваться значением d при t = √2. Точно так же можно было бы спросить, чему равно t, когда d равно, скажем, 50: при d = 50, как нетрудно видеть, t = √(50/4,9) , т.е. принимает иррациональноезначение. Но, как мы уже отмечали, в XVII в. понятие иррационального числа еще не получило должного истолкования. Следовательно, едва зародившейся теории функций явно недоставало логических обоснований, как не было их и у арифметики. Однако, поскольку к середине XVII в. математики привыкли свободно обращаться с иррациональными числами, на отсутствие таких обоснований никто не обращал внимания.

Две проблемы привлекали к себе внимание величайших математиков XVII в., наиболее известными среди которых были Кеплер (1571-1630), Декарт (1596-1650), Бонавентура Кавальери (1598-1647), Ферма (1601-1665), Блез Паскаль (1623-1662), Джеймс Грегори (1638-1675), Жиль Персон, называвший себя де Робервалем[78](1602-1675), Христиан Гюйгенс (1629-1695), Исаак Барроу (1630-1677), Джон Валлис (1616-1703) и, конечно же, Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716). Каждый из этих ученых по-своему подошел к проблемам определения и вычисления производной и определенного интеграла. Одни из творцов дифференциального и интегрального исчисления рассуждали чисто геометрически, другие — чисто алгебраически, третьи использовали смешанный алгебро-геометрический подход. Нас будет интересовать, насколько создателям новых методов исчисления удалось приблизиться к образцам математической строгости. Для этого достаточно обратиться к нескольким наиболее типичным примерам, поскольку многие из предложенных методов были очень ограниченными и особого упоминания не заслуживают.

Природу производной легче всего понять, если представить ее как скорость(именно так поступил Ньютон). Если тело преодолевает расстояние 20 м за 4 с, то его средняя скорость равна 5 м/с, а если тело движется равномерно, то его средняя скорость на протяжении 4 с совпадает с мгновенной, т.е. со скоростью в любой данный момент. Однако движения чаще всего неравномерны. Тело, падающее на Землю, снаряд, вылетевший из пушки, планета, обращающаяся вокруг Солнца, — все движутся неравномерно: их скорость непрерывно меняется. Во многих случаях необходимо знать значения скорости движения в разные моменты времени. Например, жизненно важно знать, с какой скоростью пуля долетает до человека; если эта скорость близка к 0 м/с, то на землю упадет пуля, тогда как при скорости порядка 300 м/с на землю падает человек. По самому своему смыслу момент времени есть не что иное, как «нулевой промежуток» времени, а за нулевое время тело, разумеется, проходит равное нулю расстояние. Следовательно, если бы мы решили вычислять мгновенную скорость так, как вычисляют среднюю скорость, т.е. деля пройденное расстояние на требующееся для его прохождения время, то получили бы выражение 0/0, а такое отношение смысла не имеет.

Выход из создавшегося затруднения, который промелькнул в сознании математиков XVII в., но не был уяснен ими до конца, состоит в следующем. Предположим, что требуется вычислить скорость, которую приобретает свободно падающее тело ровно через 4 с после начала падения. Выбрав любой конечный промежуток времени (в отличие от нулевого промежутка — момента времени), в течение которого тело падает, и разделив на него расстояние, пройденное телом за это время, мы получим среднюю скорость за выбранный промежуток времени. Вычислим теперь среднюю скорость за промежутки времени, следующие за 4-й секундой и имеющие продолжительность 1/2, 1/4, 1/8, … с. Ясно, что, чем меньше промежуток времени, тем ближе средняя скорость к мгновенной скорости тела через 4 с после начала падения. По-видимому, нам остается лишь вычислить средние скорости и посмотреть, к какой величине они стремятся. Эта величина и определяет мгновенную скорость, которой тело достигает к концу 4-й секунды свободного падения. Предложенная схема кажется достаточно разумной, хотя и таит в себе, как мы увидим в дальнейшем, некоторые сложности. Как бы то ни было, скорость к концу 4-й секунды свободного падения, если она вычислима, называется производной функции d = 4,9t2 при t = 4.

Трудности, связанные с определением производной, станут более понятными, если от словесного описания производной перейти на язык символов. Математическое определение производной, которое, по существу, и было в конце концов принято, принадлежит Ферма. Вычислим скорость, приобретаемую через 4 с после начала свободного падения мячом, движение которого описывается функцией

 

d = 4,9t 2. (1)

 

При t = 4 получаем: d = 4,9∙42 = 78,4 м. Пусть h — приращение времени. За время (t + h) с мяч пролетит в свободном падении расстояние 78,4 м плюс некоторое дополнительное расстояние k. Следовательно,

 

78,4 + k = 4,9 (4 + h )2 = 4,9(16 + 8h + h 2),

 

или

 

78,4 + k = 78,4 + 39,2h + 4,9h 2.

 

Вычтем из правой и левой частей последнего равенства по 78,4:

 

k = 39,2h + 4,9h 2.

 

Итак, средняя скорость за время h с свободного падения равна

 

k/h = (39,2h + 4,9h 2)/h. (2)

 

При рассмотрении этой простой функции и других функций Ферма повезло: числитель и знаменатель правой части ему удалось разделить на h, получив

 

k/h = 39,2 + h . (3)

 

Затем Ферма положил приращение h равным нулю и получил, что скорость тела через 4 с после начала свободного падения такова:

 

d∙ = 39,2 м/с. (4)

 

(d∙ — обозначение производной, предложенное Ньютоном). Итак, d∙ — производная от d = 4,9t2 при t = 4 .

Против предложенного Ферма метода вычисления производной можно возразить, указав, что приращение h должно быть отлично от нуля, ибо выполнение таких операций, как деление числителя и знаменателя на h, возможно только при h, отличном от нуля. Но тогда и равенство (3) справедливо только при h, отличном от нуля. Следовательно, мы не можем полагать в (3) значение h равным нулю и делать из этого предположения какие бы то ни было выводы. Кроме того, в случае такой простой функции, как d = 4,9t2, соотношение (2) после сокращения правой части на h переходит в соотношение (3). В случае же более сложных функций нам пришлось бы иметь дело с выражением типа (2). При h = 0 правая часть (2), выражающая предельное значение средней скорости k/h, обращается в неопределенность 0/0.

Ферма никогда не занимался обоснованием своего метода, и, хотя он по праву может быть назван одним из создателей математического анализа, ему не удалось продвинуться здесь особенно далеко. Он был достаточно осторожен, чтобы пытаться формулировать общие теоремы, если сознавал, что какая-либо идея не обоснована им полностью.[79]Ферма довольствовался тем, что предложил правильный алгоритм, которому смог дать геометрическую интерпретацию, и надеялся, что когда-нибудь удастся найти полное геометрическое обоснование предложенного им метода.

Второе понятие математического анализа, доставившее немало хлопот его создателям, — (определенный) интеграл — встречается, например, при вычислении площадей фигур, ограниченных целиком или частично кривыми линиями, объемом тел, ограниченных изогнутыми поверхностями (не плоскостями!), а также центров тяжести тел различной формы. Чтобы понять, какого рода трудности встречаются при использовании понятия определенного интеграла, рассмотрим вычисление площади криволинейной трапеции.

Предположим, требуется найти площадь криволинейной трапеции DEFG (рис. 6.1), ограниченной дугой FG кривой, задаваемой уравнением y = x2, отрезком DE оси x и вертикальными отрезками DG и EF. В этом случае, как и при вычислении производной, мы хотим найти интересующую нас величину методом все более точных последовательных приближений. Нечто подобное предприняли математики XVII в.

 

Рис. 6.1. Криволинейная трапеция DEFG.

 

Разобьем отрезок DE на три равные части (каждая длиной h ) и обозначим точки разбиения через D1, D2, и D3 (точка D3 совпадает с точкой E, рис. 6.2). Пусть y1, y2, и y3 — ординаты в точках разбиения. Тогда y1h, y2h, и y3h — площади трех прямоугольников, изображенных на рис. 6.2, а

 

y1h + y2h + y3h (5)

 

— сумма площадей этих трех прямоугольников, являющаяся некоторым приближением к площади DEFG.

 

Рис. 6.2. Вычисление площади криволинейной трапеции (основание DE разбито на 3 части).

 

Лучшее приближение к площади криволинейной трапеции DEFG мы можем получить, уменьшая размеры прямоугольников и увеличивая их число. Предположим, что отрезок DE мы разбили не на три, а на шесть частей. На рис. 6.3, в частности, показано, что произойдет при таком разбиении со средним прямоугольником, изображенным на рис. 6.2: после разбиения его заменяют два прямоугольника. Поскольку за высоту каждого прямоугольника мы выбираем ординату y в соответствующей точке разбиения отрезка DE, заштрихованный прямоугольник на рис. 6.3 уже не входит в сумму площадей тех шести прямоугольников, которыми аппроксимируется теперь площадь криволинейной трапеции DEFG. Следовательно, сумма

 

y1h + y2h + y3h + y4h + y5h + y6h (6)

 

(где новое h в два раза меньше прежнего) дает более точное приближение к площади трапеции DEFG, чем сумма (5).

 

Рис. 6.3. Вычисление площади криволинейной трапеции DEFG (основание DE разбито на 6 частей)

 

Относительно применяемого нами метода последовательных приближений можно в общем сказать следующее. Разделив отрезок DE на n частей, мы получили бы n прямоугольников, каждый шириной h. Пусть y1, y2, …, yn — ординаты в точках разбиения (многоточие означает, что включены все ординаты y в точках разбиения). Сумма площадей n прямоугольников равна

 

y1h + y2h + y3h + … + ynh (7)

 

(и на этот раз многоточие означает, что в сумму входят все промежуточные прямоугольники). Мы уже говорили о том, как влияет на точность приближения разбиение отрезка DE на все более мелкие части. Следовательно, приближенное значение площади криволинейной трапеции DEFG, задаваемое суммой (7), с увеличением n становится все более точным. Но по мере возрастания n убывает h, поскольку h = DE/n. Итак, мы установили, что фигуры, ограниченные отрезками прямых (в нашем случае — прямоугольниками), позволяют добиться все более точного приближенного вычисления площади фигуры, ограниченной кривой.

Интуитивно ясно, что, чем больше число прямоугольников, тем точнее сумма их площадей аппроксимирует площадь криволинейной фигуры. Но если остановиться на 50 или на 100 прямоугольниках, то сумма их площадей еще не будет в точности равна площади аппроксимируемой фигуры, и математикам XVII в., придумавшим этот подход к вычислению площадей, пришло в голову устремить n к бесконечности. Правда, в то время еще не было вполне ясно, что такое бесконечность. Можно ли считать бесконечность числом, и если да, то как производить арифметические действия над этим числом? Получив выражения (7) для суммы площадей n прямоугольников и обнаружив в них члены вида 1/n и 1/n2, Ферма отбросил их на том основании, что, когда n обращается в бесконечность, эти члены пренебрежимо малы. Как и при выводе производной, Ферма полагал, что строго его идею удастся доказать скорее всего с помощью метода исчерпывания, введенного Евдоксом (довольно ограниченный и весьма непростой геометрический метод, которым искусно пользовался Архимед).

Из ранних попыток вычисления площадей и объемов с помощью определенного интеграла работа Бонавентуры Кавальери заслуживает внимания по двум причинам: во-первых, она оказала большое влияние на современников Кавальери и на математиков последующих поколений и, во-вторых, довольно точно отражала типичные особенности характерного для того времени математического мышления, которое сегодня можно было бы назвать довольно смутным. Кавальери считал, что площадь фигуры, которая выглядит примерно так, как показано на рис. 6.1, состоит из бесконечно большого числа элементов; эти элементы он называл неделимыми. Вполне возможно, что неделимыми могли быть отрезки прямых. У самого Кавальери не было ясности относительно того, что именно представляют собой его неделимые. Он лишь утверждал, что если площадь фигуры разбивать на все меньшие и меньшие прямоугольники, как показано на рис. 6.3, то в конечном итоге получатся неделимые. В одной из своих книг, «Шесть геометрических упражнений» (Ехеrcitationes geometricae sex, 1647), Кавальери «объяснил», что рассматриваемая фигура состоит из неделимых, как, например, ожерелье — из бусин, ткань — из нитей и книга — из страниц. Руководствуясь столь неясным понятием, Кавальери тем не менее научился сравнивать две площади или два объема и получать правильные соотношения между двумя сравниваемыми величинами [38].

Критиков Кавальери его объяснения не удовлетворяли. Один из современников Кавальери, Пауль Гульдин (1557-1643), обвинил его в том, что он преднамеренно суживает рамки греческой геометрии, вместо того чтобы понять ее. А один из современных нам историков науки заявил, что если бы существовал особый приз за неясность, то названная работа Кавальери была бы тут вне всякой конкуренции и, безусловно, заслужила бы такую награду. Не имея возможности объяснить, как из бесконечного числа элементов (неделимых) можно составить фигуру конечной протяженности, Кавальери пытался уйти от ответа на вопрос, отказываясь дать сколько-нибудь точную интерпретацию неделимых. Иногда он в довольно туманных выражениях говорил о бесконечной сумме линий, не объясняя явно природу бесконечности. В других случаях Кавальери называл свой метод не более чем прагматическим приемом, позволяющим заменить сложный метод исчерпывания, применявшийся древними греками. По свидетельству Кеплера, приведенному в его сочинении «Новая стереометрия винных бочек» (Stereometria doliorum vinariorum, 1616) [39], Кавальери ссылался на современных ему геометров, обращавшихся с понятиями еще более свободно, чем он сам. Эти геометры, говорил он, вычисляя площади, подражают методу Архимеда, но им не удается найти тех полных доказательств, которые позволяли великому греку придать своим работам необходимую строгость. Тем не менее геометры, о которых шла речь, были довольны своими вычислениями, поскольку те приводили к полезным результатам. Встав, по существу, на ту же точку зрения, Кавальери счел, что и предложенный им метод неделимых может приводить к новым открытиям; однако, пользуясь этим методом, отнюдь не обязательно полагать, будто геометрическая фигура в самом деле состоит из бесконечно большого числа «неделимых» элементов. Метод предназначен лишь для того, чтобы установить правильные соотношения между площадями или между объемами, а эти соотношения сохраняют свою ценность и значение независимо от того, какого мнения придерживается тот или иной геометр относительно элементов, составляющих фигуру. В качестве последнего контрдовода против возражений своих критиков Кавальери указал, что концептуальные проблемы относятся к ведению философии и потому несущественны в практической работе с фигурами и телами. О строгости, заметил он, пристало заботиться философии — но не геометрии.

В защиту Кавальери выступил и Паскаль. В своих «Письмах из Деттонвиля» (1658) он утверждал, что геометрия неделимых превосходно согласуется с евклидовой геометрией: «То, что может быть доказано с помощью истинных правил неделимых, может быть также доказано со всей строгостью на манер древних». По мнению Паскаля, геометрия неделимых Кавальери и геометрия древних греков отличаются только терминологией. Метод неделимых, считал Паскаль, должен быть принят каждым математиком, претендующим на то, чтобы считаться геометром. Но и у Паскаля не было определенного мнения относительно математической строгости. Иногда он утверждал, что, подобно тому как религия ставит милосердие превыше разума, так и для получения правильных результатов необходима истинная «утонченность», а не логика, присущая геометрии. Парадоксы геометрии, проявившиеся в математическом анализе, Паскаль сравнивал с кажущимися нелепостями христианства и считал, что неделимые значат в геометрии не более чем суд мирской в сравнении с судом божьим.

Согласно Паскалю, необходимые поправки в идеи нередко вносит не разум, а душа (гл. II). В своих «Мыслях» он говорит: «Мы постигаем истину не только разумом, но и душой. Из последнего источника мы познаем первые принципы, и разум, не принимающий в этом участия, тщетно пытается сражаться с душой… На нашем знании души и инстинкта с необходимостью зиждется разум, и этим знанием он питается». Разумеется, такими рассуждениями Паскаль никак не мог помочь уяснению метода Кавальери.

Наибольший вклад в создание математического анализа внесли Ньютон и Лейбниц. Ньютон почти не занимался понятием интеграла, но интенсивно разрабатывал понятие производной. По существу, предложенный им метод вычисления производной мало чем отличался от метода Ферма. Не было у Ньютона и большей ясности относительно логического обоснования понятия производной. Математическому анализу Ньютон посвятил три работы. Кроме того, он коснулся этого вопроса в наиболее значительном из своих сочинений — «Математических началах натуральной философии», вышедших тремя изданиями. Излагая в первой работе (1669 — см. [140]) свой метод вычисления производной, Ньютон заметил, что он его скорее «кратко объяснил, чем строго доказал». При вычислении производной Ньютон воспользовался тем, что h и k — неделимые. Во второй работе (1671) Ньютон замахнулся на большее: он заявил, что изменил свою точку зрения на переменные и считает теперь необходимым рассматривать их не как дискретные, а как непрерывно изменяющиеся величины (в случае дискретных переменных величины h в конечном счете вырождаются в неделимые). Ньютон утверждал, что ему удалось избавиться от чрезмерной жесткости теории неделимых, которую он применил в первой работе. Однако внесенные Ньютоном изменения, по существу, никак не сказались на ходе вычисления производной, или, как предпочитал ее называть сам Ньютон, флюксии. И с логикой во второй работе дело обстояло ничуть не лучше, чем в первой.

В своей третьей работе по математическому анализу — «Рассуждения о квадратуре кривых» (1676) — Ньютон еще раз заявил, что отказывается от бесконечно малых величин (в конечном счете неделимых), и критически отозвался об отбрасывании членов в соотношении (3), содержащих множитель h, поскольку «в математике не следует пренебрегать даже самыми малыми ошибками». После этих предварительных замечаний Ньютон дал новое объяснение понятия «флюксия»: «Флюксии, когда приращения флюэнт [переменных] возникают во все большем числе, отличаются сколь угодно мало и сами сколь угодно малы, и если говорить точно, то они пропорциональны возникающим приращениям…». Разумеется, пользы от столь смутных объяснений было немного. Что же касается метода вычисления флюксией, то с логической точки зрения третья работа Ньютона была столь же малообоснованной, как и первая. Производную Ньютон вычислял, отбросив все члены в (2), содержавшие h в степени выше первой, например члены с h2.

Несколько утверждений относительно флюксий Ньютон высказал в своем главном труде «Математические начала натуральной философии» (1-е изд., 1687). От неделимых в пределе величин он отказался в пользу «исчезающе делимых величин», т.е. величин бесконечно делимых. В первом и в третьем изданиях «Начал» Ньютон утверждал:

 

Предельные отношения исчезающих количеств не суть отношения пределов этих количеств, а суть те пределы, к которым при бесконечном убывании количеств приближаются отношения их и к которым эти отношения могут подойти ближе, нежели на любую наперед заданную разность, но которых превзойти или достигнуть на самом деле не могут, ранее чем эти количества уменьшатся бесконечно.

([20], с. 70.)

 

Хотя приведенный нами отрывок не отличается особой ясностью, это наиболее ясное из всех утверждений Ньютона о флюксиях. Именно здесь Ньютон употребил ключевое слово «пределы» (его терминология была иной), хотя и не стал углубляться в анализ этого понятия.

Ньютон, несомненно, сознавал неудовлетворительность предложенного им объяснения флюксии и, должно быть, с отчаяния обратился к ее физическому смыслу. Вот что говорится об этом в «Началах».

 

Делают возражение, что для исчезающих количеств не существует «предельного отношения», ибо то отношение, которое они имеют ранее исчезания, не есть предельное, после же исчезания нет никакого отношения. Но при таком и столь же натянутом рассуждении окажется, что у тела, достигающего какого-либо места, где движение прекращается, не может быть «предельной» скорости, ибо та скорость, которую тело имеет ранее, нежели оно достигло этого места, не есть «предельная», когда же достигло, то нет скорости. Ответ простой: под «предельною» скоростью надо разуметь ту, с которою тело движется не перед тем, как достигнуть крайнего места, где движение прекращается, и не после того, а когда достигает, т.е. именно ту скорость, обладая которой тело достигает крайнего места и при которой движение прекращается. Подобно этому, под предельным отношением исчезающих количеств должно быть разумеемо отношение количеств не перед тем, как они исчезают, и не после того, но при котором исчезают.

([20], с. 69.)

 

Поскольку результаты его математических исследований были физически вполне осмысленными, Ньютон не уделял особого внимания логическому обоснованию математического анализа. В «Началах» он пользовался геометрическими методами и приводил теоремы о пределах в их геометрической формулировке. Позднее Ньютон признал, что при выводе теорем в «Началах» он прибегал к математическому анализу, он формулировал их геометрически, чтобы придать своим рассуждениям ту степень достоверности, которой отличались доказательства древних. Разумеется, его геометрические доказательства отнюдь не были строгими. Ньютон слепо верил в непогрешимость евклидовой геометрии, но ничто не свидетельствовало о том, что евклидова геометрия могла хоть в какой-то мере помочь в обосновании математического анализа.

Несколько иной подход к математическому анализу предложил Лейбниц (см. [141]). По его мнению, величины, обозначенные нами h и k (Лейбниц обозначал их символами dx и dy ), убывая, достигают «исчезающе малых», или «бесконечно малых», значений. На этой стадии h и k отличны от нуля, но меньше любого заданного числа. Следовательно, любыми степенями h , например h2 или h3, заведомо можно пренебречь. Получающееся при этом отношение h/k и есть та самая величина, которую требовалось найти, т.е. производная, которую Лейбниц обозначил dy/dx.

Геометрический смысл величин h и k по Лейбницу заключался в следующем. Пусть P и Q — «бесконечно близкие» точки на кривой. Тогда dx — разность их абсцисс, a dy — разность их ординат (рис. 6.4). Кроме того, касательная к кривой в точке T совпадает с дугой PQ. Следовательно, отношение dy/dx задает угол наклона касательной. Треугольник PQR, называемый характеристическим, не являлся изобретением Лейбница: им пользовались Паскаль и Барроу, труды которых были известны Лейбницу. Лейбниц считал, что треугольник PQR подобен треугольнику STU, — и пользовался этим подобием для доказательства некоторых утверждений относительно dy/dx.

 

 

 

Рис. 6.4. Характеристический треугольник PQR.

 

Лейбниц широко использовал понятие интеграла и независимо пришел к идее суммирования элементарных прямоугольников, на которые разбивается криволинейная трапеция [ср. (7)]. Но переход от суммы конечного числа прямоугольников к сумме бесконечно большого числа прямоугольников был не вполне понятен. По утверждению Лейбница, сумма элементарных прямоугольников превращалась из конечной в бесконечную, когда ширина h прямоугольников становилась «бесконечно малой». Для бесконечной суммы бесконечно малых величин — интеграла — Лейбниц ввел специальное обозначение ∫ydx. Он научился вычислять такие интегралы и независимо открыл основную теорему интегрального исчисления, утверждающую, что вычисление интеграла представляет собой операцию, обратную нахождению производной (антидифференцирование). После примерно двенадцати лет упорной работы над своим вариантом математического анализа Лейбниц опубликовал первую работу о новом исчислении в журнале Acta eruditorum («Журнал ученых») за 1684 г. Наиболее выразительный отзыв на эту работу Лейбница дали его друзья, братья Якоб и Иоганн Бернулли, заявив, что это «не столько загадка, сколько объяснение».

Идеям Ньютона и Лейбница недоставало ясности, и критики не замедлили воспользоваться этим. Ньютон не снисходил до ответа на критические замечания, тогда как Лейбниц считал своим долгом ответить на возражения критиков. Его попытки объяснить в частной переписке свое понимание бесконечно малых величин столь многочисленны, что для подробного разбора их понадобилось бы немало страниц. В статье, опубликованной в томе Acta eruditorum за 1689 г., Лейбниц утверждал, что бесконечно малые — не действительные, а некие фиктивные числа. Но эти фиктивные, или мнимые, числа подчиняются тем же правилам арифметики, что и обычные числа.

В той же статье Лейбниц, исходя из геометрических соображений, доказывал, что высший дифференциал (бесконечно малая более высокого порядка, чем первый), например (dx)2, относится к низшему дифференциалу dx, как точка к прямой, и что dx относится к x, как точка к земному шару или радиус Земли к радиусу небесной сферы. Отношение двух бесконечно малых Лейбниц мыслил как отношение двух неопределенностей или бесконечно малых величин, которое, однако, можно выразить через конечные величины. Например, геометрически отношение dy к dx есть не что иное, как отношение ординаты к подкасательной (TU к SU на рис. 6.4).

Одним из критиков, выступивших против Лейбница, был Бернгардт Нювентидт (1654-1718). Ответ Лейбница ему был опубликован в Acta eruditorum за 1695 г. Лейбниц обрушился на ревнителя математической строгости, справедливо заметив, что чрезмерная скрупулезность не должна отвращать нас от плодов нового открытия. Лейбниц утверждал, что его метод отличается от метода Архимеда только терминологией, и считал, что избранная им терминология в большей мере отвечает искусству совершать открытия. Термины «бесконечная» и «бесконечно малая» относятся к величинам, которые можно считать сколь угодно большими или сколь угодно малыми, когда требуется показать, что совершаемая ошибка меньше «наперед заданного числа» (т.е. что ошибки нет). Предельные величины, т.е. все эти «действительные бесконечности» и «бесконечно малые», можно использовать как удобный рабочий инструмент в вычислениях, подобно тому как алгебраисты с превеликой пользой используют мнимые корни. (Напомним, что во времена Лейбница мнимые корни имели весьма шаткий статус.)

В письме к Валлису, написанном в 1699 г., Лейбниц дал несколько иное объяснение бесконечно малых:

 

Бесконечно малые величины полезно рассматривать так, чтобы, когда требуется найти их отношение, их нельзя было считать нулем, но чтобы в то же время ими можно было пренебречь по сравнению с неизмеримо большими величинами. Так, в x + dx величина dx пренебрежимо мала. Иное дело, если нам требуется найти разность между x + dx и x. Точно так же не следует допускать, чтобы xdx и dxdx стояли рядом. Если необходимо продифференцировать [найти производную] ху, то мы пишем: (x + dx)(y + dy) − xy = xdy + ydx + dxdy. Но член dxdy неизмеримо мал по сравнению с xdy + ydx, и его надлежит отбросить. Итак, в рассмотренном нами частном случае ошибка меньше любой конечной величины.

 

Так Лейбниц отстаивал законность математических понятий, используемых в созданном им варианте анализа. Поскольку приводимые Лейбницем доводы не удовлетворяли его критиков, он сформулировал философский принцип, известный под названием принципа непрерывности и практически не отличающийся от того, которым пользовался Кеплер. Этот принцип Лейбниц сформулировал с самого начала своей работы по созданию анализа, изложив его в письме Герману Конрингу от 19 марта 1678 г.: «Если переменная на всех промежуточных этапах обладает некоторым свойством, то и ее предел будет обладать тем же свойством».

В письме к Пьеру Бейлю, написанном в 1687 г., Лейбниц сформулировал свой принцип более полно: «В любом переходе, завершающемся неким пределом, допустимо использовать общее рассуждение, которое может включить этот предел». Свой принцип Лейбниц применил к вычислению производной dy/dx для параболы y = x2. Получив dy/dx = 2x + dx, Лейбниц заметил: «Согласно нашему постулату, допустимо включать в общее рассуждение и тот случай (рис. 6.5), когда ордината x2y2 все более приближается к фиксированной ординате x1y1, пока наконец не совпадет с ней. Ясно, что тогда dx становится равным нулю и должен быть отброшен…» Лейбниц умолчал о том, какие значения следует придавать dx и dy, входящим в левую часть равенства dy/dx = 2x + dx, когда dx обращается в нуль.

 

Рис. 6.5. Переход к пределу х2→x1 Лейбницу.

 

Абсолютно равные величины, говорил Лейбниц, имеют, разумеется, разность абсолютно ничтожную.

 

Тем не менее можно вообразить переход или одно из обращений в нуль, при котором точное равенство или состояние покоя еще не наступило, но достигнуто такое состояние, в котором разность меньше любой заданной величины. В таком состоянии некоторая разность — какая-то скорость, какой-то угол — еще остается, но в каждом случае она бесконечно мала…

Можно ли строго или метафизически обосновать такое состояние мгновенного перехода от неравенства или равенства и сколь законны соображения, использующие бесконечно большие протяженности, продолжающие неограниченно возрастать, или бесконечно малые протяженности, — вопросы, которые мне, по-видимому, придется оставить открытыми…

Вполне достаточно, если каждый раз, когда речь заходит о бесконечно больших (или, точнее, о неограниченных) или о бесконечно малых (т.е. о самых малых из известных нам) величинах, мы условимся понимать, что имеем в виду величины бесконечно большие или бесконечно малые, т.е. сколь угодно большие или сколь угодно малые, вследствие чего допускаемая ошибка может быть меньше заранее заданной величины.

При таких допущениях все правила нашего алгоритма, изложенные в Acta eruditorum за октябрь 1684 г., могут быть доказаны без особого труда.

 

Далее следовало изложение правил, ничего, впрочем, не добавляющее к их обоснованию.

Сформулированный Лейбницем принцип непрерывности заведомо не был (и ныне не является) математической аксиомой. Тем не менее Лейбниц всячески подчеркивал важность этого принципа и неоднократно использовал его в своих рассуждениях. Так, в письме к Валлису (1698) Лейбниц, отстаивая использование характеристического треугольника (рис. 6.4) как формы, не имеющей размеров и потому остающейся неизменной, когда длины всех сторон треугольника обращаются в нуль, с вызовом спрашивал: «Кто не приемлет форму, лишенную размеров?» В письме к Гвидо Гранди (1713) Лейбниц утверждал, что бесконечно малая — это не простой и абсолютный нуль, а нуль относительный, т.е. исчезающая величина, которая, однако, сохраняет свойство той величины, которая, собственно, исчезает. Но в других случаях Лейбниц признавал, что не верит в истинно бесконечно большие или истинно бесконечно малые величины.

До конца жизни (он умер в 1716 г.) Лейбниц продолжал объяснять, что такое его бесконечно малые и бесконечно большие величины. Однако все эти объяснения были не более убедительны, чем приведенные выше. Созданное Лейбницем дифференциальное и интегральное исчисление не имело ни четко сформулированных понятий, ни обоснований.

У нас может вызвать удивление, что Ньютон и Лейбниц могли довольствоваться столь грубыми рассуждениями. Еще до того, как они приступили к созданию дифференциального и интегрального исчисления, другие великие математики достигли выдающихся успехов, о которых и Ньютон, и Лейбниц, изучавшие труды своих предшественников, безусловно, хорошо знали. Знаменитое высказывание Ньютона «Если я видел дальше других, то лишь потому, что стоял на плечах гигантов» не просто проявление скромности, а констатация факта. Что же касается Лейбница, то он был одним из величайших мыслителей. Мы уже упоминали (гл. III) о том, сколь значительный вклад он внес в развитие различных областей человеческого знания. По широте и силе интеллекта Лейбница можно сравнить разве что с Аристотелем. Разумеется, создание дифференциального и интегрального исчисления потребовало разработки принципиально новых, очень тонких идей, а даже лучшие из умов, способные к величайшим творческим свершениям, не всегда до конца постигают то, что ими же создано.

Ни Ньютон, ни Лейбниц не могли полностью объяснить вводимые ими понятия или обосновать новые операции. Они полагались на плодотворность своих методов, совпадение получаемых ими независимо друг от друга результатов, и продолжали упорно и энергично двигаться вперед, не особенно задумываясь о строгости. Лейбниц, заботившийся о строгости меньше, чем Ньютон, хотя и чаще отвечавший на возражения критиков, считал, что лучшим обоснованием используемых им методов сл



2015-11-23 589 Обсуждений (0)
Нелогичное развитие: в трясине математического анализа 0.00 из 5.00 0 оценок









Обсуждение в статье: Нелогичное развитие: в трясине математического анализа

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (589)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.015 сек.)