Мегаобучалка Главная | О нас | Обратная связь


ВЕКТОРНЫЙ СПОСОБ ИЗУЧЕНИЯ ДВИЖЕНИЯ



2015-11-27 1280 Обсуждений (0)
ВЕКТОРНЫЙ СПОСОБ ИЗУЧЕНИЯ ДВИЖЕНИЯ 0.00 из 5.00 0 оценок




Введение

Все явления природы представляют собой движение различных форм материи. В теоретической механике рассматриваются механические движения материальных объектов, таких как материальные тела или сплошные среды, и не рассматриваются такие физические объекты, как электромагнитное поле, его источники и др. Материальность тел и сплошных сред в теоретической механике характеризуется массой и другими величинами, связанными с ней.

Всякое изменение материи называют движением. Одним из простейших является механическое движение – перемещение материальных объектов в пространстве с течением времени без рассмотрения физических свойств движущихся материальных объектов и их изменения в процессе движения. Механическое движение обычно входит составной частью в более сложные виды движения материи.

В теоретической механике изучаются механические движения вещественных форм материальных объектов в пространстве с течением времени.

Теоретическая механика делится на три части: статику, кинематику и динамику. Статика – раздел теоретической механики, в котором рассматривают свойства сил, приложенных к точкам твердого тела, и условия их равновесия. В кинематике изучают чисто геометрические формы механических движений материальных объектов (точки, твердого тела, сплошной среды) без учета условий и причин, вызывающих и изменяющих эти движения. Такое изучение движения материальных объектов не требует учета материальных характеристик этих объектов – массы, моментов инерции и др. В динамике изучаются механические движения материальных объектов в зависимости от сил, т.е. от действия на рассматриваемые объекты других материальных объектов.

В данной части учебного пособия кратко изложены основные положения, понятия и законы, которыми оперирует кинематика.

В кинематике рассматривают такие характеристики движения, как скорость и ускорение точки, угловые скорость и ускорение твердого тела и др.

Движение материальных объектов, в частности материальной точки, совершается в пространстве при изменении времени. Пространство в классической механике считается евклидовым, не зависящим от времени и движущихся в нем материальных объектов. Время принимается универсальным, не связанным с пространством и не зависящим как от движения наблюдателя, с точки зрения которого рассматривается движение материального объекта, так и от движения самого материального объекта.

Движение материального объекта всегда следует рассматривать относительно какого-либо твердого тела – тела отсчета, т.е. движение является относительным. С телом отсчета скрепляют систему осей координат, например декартовых, принимая ее за систему отсчета, относительно которой рассматривается движение материального объекта. Системой отсчета для трехмерного евклидова пространства не может служить одна точка, линия или плоскость, а должны быть три оси, не обязательно прямолинейные, но не лежащие в одной плоскости.

Независимость времени от движения означает, что во всех системах отсчета, произвольно движущихся друг относительно друга, оно одно и то же, если за начало отсчета выбрано общее для них событие.

В кинематике сплошной среды телами отсчета, относительно которых рассматривается движение, могут быть также деформируемые тела.


КИНЕМАТИКА ТОЧКИ

В кинематике точки рассматриваются характеристики движения точки, такие, как скорость, ускорение, и методы их определения при различных способах задания движения. Важным в кинематике точки является понятие траектории. Траекторией точки называется геометрическое место ее последовательных положений в пространстве с течением времени относительно рассматриваемой системы отсчета.

По виду траекторий движения точки делятся на прямолинейные и криволинейные. Форма траектории зависит от выбранной системы отсчета. Одно и то же движение точки может быть прямолинейным относительно одной системы отсчета и криволинейным относительно другой. Например, если с летящего горизонтально Земле с постоянной скоростью самолета отцеплен груз, то, пренебрегая сопротивлением воздуха и учитывая только действие силы тяжести, получим в качестве траектории движения центра масс груза относительно самолета прямую линию, а относительно Земли – параболу.

СКОРОСТЬ ТОЧКИ

Одной из основных характеристик движения точки является ее скорость относительно выбранной системы отсчета, которая изображена в виде декартовой прямоугольной системы координат (рис. 1).

Положение движущейся точки относительно рассматриваемой системы отсчета определяется в момент времени радиусом-вектором , который соединяет неподвижную точку с этой точкой. В другой момент времени движущаяся точка займет положение и ее радиусом-вектором будет . За время радиус-вектор движущейся точки изменится на .

Средней скоростью точки за время называют отношение , т.е.:

.

Средняя скорость параллельна вектору . В общем случае она зависит от времени осреднения . У нее нет конкретной точки приложения на траектории.

Введем скорость точки в момент , которая определяется как предел средней скорости, если промежуток времени, за который определяется средняя скорость, стремится к нулю, т. е.

.

Скорость точки направлена в сторону ее движения по предельному направлению вектора при , стремящемся к нулю, т.е. по предельному направлению секущей , которая совпадает с касательной к траектории в точке . Таким образом, скорость точки равна первой производной по времени от ее радиуса-вектора. Она направлена по касательной к траектории в сторону движения точки.

Начало радиуса-вектора движущейся точки можно выбрать в любой неподвижной точке. На рис. 1 представлен случай, в котором радиусом-вектором является также с началом в точке . Радиусы-векторы имеют одинаковые изменения и за время и поэтому

. (1)

Размерность скорости в СИ получаем из (1): .

Для характеристики переменного вектора используют понятие его годографа. Годографом вектора называют геометрическое место его концов, если переменный вектор в различные моменты времени откладывать от одной и той же общей точки.

Траектория точки, очевидно, является годографом радиуса-вектора или (рис. 1). Последовательные положения вектора в различные моменты времени откладываются в этом случае от точки , а вектора – от точки .

Первая производная по времени от радиуса-вектора есть скорость точки, направленная по касательной к траектории. Следовательно, параллельно касательной к годографу направлена первая производная по скалярному аргументу от любого переменного вектора.

Годографом вектора скорости является линия, на которой располагаются концы этого вектора в различные моменты времени, если их начала совместить в одной общей точке. Для построения годографа вектора скорости выбираем точку, например (рис. 2, 6), и начала векторов скорости для различных моментов времени переносим в эту точку, не изменяя их величин и направлений. Каждой точке траектории М (рис. 2, а) будет соответствовать своя изображающая точка М' на годографе вектора скорости (рис. 2, б). Масштаб для скоростей при построении годографа вектора скорости может быть выбран отличным от масштаба для скоростей, изображаемых в точках траектории. При движении точки по траектории соответствующая ей изображающая точка движется по годографу вектора скорости.

При равномерном движении точки по прямой годографом вектора скорости является одна точка; при неравномерном движении – отрезок прямой, параллельный траектории.

УСКОРЕНИЕ ТОЧКИ

Пусть движущаяся точка в момент времени имеет скорость . В момент времени эта точка занимает положение , имея скорость (рис. 3, а). Чтобы изобразить приращение скорости за время , перенесем вектор скорости параллельно самому себе в точку .

Рис. 3

 

Средним ускорением точки за время называют отношение , т.е. . Среднее ускорение точки параллельно приращению скорости . Как и средняя скорость, среднее ускорение не имеет на траектории конкретной течки приложения и изображено в точке условно. В общем случае среднее ускорение зависит от времени .

Ускорением точки в момент времени называют предел, к которому стремится среднее ускорение при , стремящемся к нулю, т. е.

. (2)

Таким образом, ускорение точки равно первой производной по времени от скорости точки.

Приращение скорости и, следовательно, среднее ускорение направлены внутрь вогнутости траектории. Так же направлены и их предельные значения при , стремящемся к нулю. Поэтому ускорение точки направлено тоже внутрь вогнутости траектории. Кроме того, ускорение как первая производная по времени от скорости, по свойству годографа вектора, параллельна касательной к годографу вектора скорости (рис. 3, б).

Размерность ускорения в СИ получаем из (2): .

ВЕКТОРНЫЙ СПОСОБ ИЗУЧЕНИЯ ДВИЖЕНИЯ

Движение точки относительно рассматриваемой системы отсчета при векторном способе изучения движения задается радиусом-вектором этой точки (рис. 4). Движение точки считается заданным, если известен радиус-вектор движущейся точки как функция времени, т. е.

. (3)

Задание векторного уравнения движения (3) полностью определяет движение точки.

Траекторией точки является годограф радиуса-вектора. Скорость точки направлена по касательной к траектории и вычисляется, согласно ее определению, по формуле:

. (4)

Для ускорения точки соответственно имеем

. (5)

Таким образом, если движение точки задано векторным способом, то скорость и ускорение вычисляются по формулам (4) и (5).

Определение скорости и ускорения точки сводится к чисто математической задаче вычисления первой и второй производных по времени от радиуса-вектора этой точки. Для практического вычисления скорости и ускорения обычно используют координатный и естественный способы изучения движения. Векторный способ ввиду его краткости и компактности удобен для теоретического изложения кинематики точки.



2015-11-27 1280 Обсуждений (0)
ВЕКТОРНЫЙ СПОСОБ ИЗУЧЕНИЯ ДВИЖЕНИЯ 0.00 из 5.00 0 оценок









Обсуждение в статье: ВЕКТОРНЫЙ СПОСОБ ИЗУЧЕНИЯ ДВИЖЕНИЯ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1280)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)