Мегаобучалка Главная | О нас | Обратная связь


Возрастание, убывание, точки экстремума функции



2015-12-04 304 Обсуждений (0)
Возрастание, убывание, точки экстремума функции 0.00 из 5.00 0 оценок




Производные и дифференциалы неявно заданных функций

 

Для функции двух переменных напишем уравнение , (3) которое устанавливает соответствие между ее равноправными переменными и . Такое соответствие порождает неявно заданную функцию (или ). В теории функций нескольких переменных мы получим прямые формулы для вычисления производных таким образом заданных функций. Тем не менее наших знаний достаточно, чтобы уже сейчас вычислять производные этих функций. Для этого надо в формуле (3) вычислить обычную производную по переменной , считая, что это сложная функция, содержащая внутреннюю функцию .

Пример 1. Для функции , заданной неявно уравнением найдите и .

Решение. От функции вычислим производную по переменной и получим и приравняем ее к 0. Отсюда найдем . Вторую производную найдем как производную от первой производной . Подставляя сюда уже найденную первую производную , найдем . С учетом того, что , получим в итоге . Нарисуйте эллипс и посмотрите на геометрический смысл полученных результатов.

 

Возрастание, убывание, точки экстремума функции

 

Определение 1. Пусть функция определена на множестве и числа , принадлежат множеству . Если из условия (*) следует, что , функция называется возрастающей на множестве . Если из условия (*) следует, что , функция называется убывающей на множестве . Если из условия (*) следует, что , функция называется неубывающей на множестве . Если из условия (*) следует, что , функция называется невозрастающей на множестве . Во всех этих случаях функция называется монотонной на множестве .

Определение 2. Точка называется точкой максимума функции , если существует число такое, что функция определена на интервале и при .

Определение 3. Точка называется точкой минимума функции , если существует число такое, что функция определена на интервале и при .

Определение 4. Точки максимума и минимума функции называются точками экстремума функции .

Теорема 1. Пусть для функции выполнено условие , тогда существует число такое, что функция возрастает на интервале .

Доказательство. По условию теоремы . Следовательно, при достаточно малых выполнено условие , т. е. большему значению аргумента соответствует большее значение функции. Отсюда функция возрастает и теорема доказана.

Теорема 2. Пусть для функции выполнено условие , тогда существует число такое, что функция убывает на интервале .

Доказательство. По условию теоремы . Следовательно, при достаточно малых выполнено условие , т. е. большему значению аргумента соответствует меньшее значение функции. Отсюда функция убывает и теорема доказана.

 



2015-12-04 304 Обсуждений (0)
Возрастание, убывание, точки экстремума функции 0.00 из 5.00 0 оценок









Обсуждение в статье: Возрастание, убывание, точки экстремума функции

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (304)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)