Мегаобучалка Главная | О нас | Обратная связь


Процессорное ядро микроконтроллера



2015-12-06 1489 Обсуждений (0)
Процессорное ядро микроконтроллера 0.00 из 5.00 0 оценок




Структура процессорного ядра МК

Основными характеристиками, определяющими производительность процессорного ядра МК, являются:

• набор регистров для хранения промежуточных данных;

• система команд процессора;

• способы адресации операндов в пространстве памяти;

• организация процессов выборки и исполнения команды.

Система команд процессора МК

Так же, как и в любой микропроцессорной системе, набор команд про­цессора МК включает в себя четыре основные группы команд:

• команды пересылки данных;

• арифметические команды;

• логические команды;

• команды переходов.

Для реализации возможности независимого управления разрядами портов (регистров) в большинстве современных МК предусмотрена также группа команд битового управления (булевый или битовый процессор). Наличие команд битового процессора позволяет существенно сократить объем кода управляющих программ и время их выполнения.

В ряде МК выделяют также группу команд управления ресурсами контроллера, используемую для настройки режимов работы портов ввода/вывода, управления таймером и т.п. В большинстве современных МК внутренние ресурсы контроллера отображаются на память данных, поэтому для целей управления ресурсами используются команды пересылки данных.

Система команд МК по сравнению с системой команд универсального МП имеет, как правило, менее развитые группы арифметических и логических команд, зато более мощные группы команд пересылки данных и управления. Эта особенность связана со сферой применения МК, требующей, прежде всего, контроля окружающей обстановки и формирования

Схема синхронизации МК

Схема синхронизации МК обеспечивает формирование сигналов синхронизации, необходимых для выполнения командных циклов центрального процессора, а также обмена информацией по внутренней магистрали. В зависимости от исполнения центрального процессора командный цикл может включать в себя от одного до нескольких (4 — 6) тактов синхронизации. Схема синхронизации формирует также метки времени, необходимые для работы таймеров МК. В состав схемы синхронизации входят делители частоты, которые формируют необходимые последовательности синхросигналов.

4.3. Память программ и данных МК

В МК используется три основных вида памяти. Память программ представляет собой постоянную память (ПЗУ), предназначенную для хранения программного кода (команд) и констант. Ее содержимое в ходе выполнения программы не изменяется. Память данных предназначена для хранения переменных в процессе выполнения программы и представляет собой ОЗУ. Регистры МК — этот вид памяти включает в себя внутренние регистры процессора и регистры, которые служат для управления периферийными устройствами (регистры специальных функций).

Память программ

Основным свойством памяти программ является ее энергонезависимость, то есть возможность хранения программы при отсутствии питания. С точки зрения пользователей МК следует различать следующие типы энергонезависимой памяти программ:

• ПЗУ масочного типа — mask-ROM. Содержимое ячеек ПЗУ этого типа заносится при ее изготовлении с помощью масок и не может быть впоследствии заменено или допрограммированно. Поэтому МК с таким типом памяти программ следует использовать только после достаточно длительной опытной эксплуатации. Основным недостатком данной памяти является необходимость значительных затрат на создание нового комплекта фотошаблонов и их внедрение в производство. Обычно такой процесс занимает 2-3 месяца и является экономически выгодным только при выпуске десятков тысяч приборов. ПЗУ масочного типа обеспечивают высокую надежность хранения информации по причине программирования в заводских условиях с последующим контролем результата.

• ПЗУ, программируемые пользователем, с ультрафиолетовым стиранием — EPROM (Erasable Programmable ROM). ПЗУ данного типа программируются электрическими сигналами и стираются с помощью ультрафиолетового облучения. Ячейка памяти EPROM представляет собой МОП-транзистор с «плавающим» затвором, заряд на который переносится с управляющего затвора при подаче соответствующих электрических сигналов. Для стирания содержимого ячейки она облучается ультрафиолетовым светом, который сообщает заряду на плавающем затворе энергию, достаточную для преодоления потенциального барьера и стекания на подложку. Этот процесс может занимать от нескольких секунд до нескольких минут. МК с EPROM допускают многократное программирование и выпускаются в керамическом корпусе с кварцевым окошком для доступа ультрафиолетового света. Такой корпус стоит довольно дорого, что значительно увеличивает стоимость МК. Для уменьшения стоимости МК с EPROM его заключают в корпус без окошка (версия EPROM с однократным программированием).

• ПЗУ, однократно программируемые пользователем, — OTPROM (One-Time Programmable ROM). Представляют собой версию EPROM, выполненную в корпусе без окошка для уменьшения стоимости МК на его основе. Сокращение стоимости при использовании таких корпусов настолько значительно, что в последнее время эти версии EPROM часто используют вместо масочных ПЗУ.

• ПЗУ, программируемые пользователем, с электрическим стиранием - EEPROM (Electrically Erasable Programmable ROM). ПЗУ данного типа можно считать новым поколением EPROM, п которых стирание ячеек памяти производится также электрическими сигналами за счет использования туннельных механизмов. Применение EEPROM позволяет стирать и программировать МК, не снимая его с платы. Таким способом можно производить отладку и модернизацию программного обеспечения. Это дает огромный выигрыш на начальных стадиях разработки микроконтроллерных систем или в процессе их изучения, когда много времени уходит на поиск причин неработоспособности системы и выполнение циклов стирания-программирования памяти программ. По цене EEPROM занимают среднее положение между OTPROM и EPROM. Технология программирования памяти EEPROM допускает побайтовое стирание и программирование ячеек. Несмотря на очевидные преимущества EEPROM, только в редких моделях МК такая память используется для хранения программ. Связано это с тем, что, во-первых, EEPROM имеют ограниченный объем памяти. Во-вторых, почти одновременно с EEPROM появились Flash-ПЗУ, которые при сходных потребительских характеристиках имеют более низкую стоимость;

• ПЗУ с электрическим стиранием типа Rash — Flash-ROM. Функционально Flash-память мало отличается от EEPROM. Основное различие состоит в способе стирания записанной информации. В памяти EEPROM стирание производится отдельно для каждой ячейки, а во Flash-памяти стирать можно только целыми блоками. Если необходимо изменить содержимое одной ячейки Flash-памяти, потребуется перепрограммировать весь блок. Упрощение декодирующих схем по сравнению с EEPROM привело к тому, что МК с Flash-памятью становятся конкурентоспособными по отношению не только к МК с однократно программируемыми ПЗУ, но и с масочными ПЗУ также.

Память данных

Память данных М К выполняется, как правило, на основе статического ОЗУ. Термин «статическое» означает, что содержимое ячеек ОЗУ сохраняется при снижении тактовой частоты МК до сколь угодно малых значений (с целью снижения энергопотребления). Большинство МК имеют такой параметр, как «напряжение хранения информации» - ustandby. При снижении напряжения питания ниже минимально допустимого уровня UDDM|N, но выше уровня USTANIJBy работа программы МК выполняться не будет, но информация в ОЗУ сохраняется. При восстановлении напряжения питания можно будет сбросить МК и продолжить выполнение программы без потери данных. Уровень напряжения хранения составляет обычно около 1 В, что позволяет в случае необходимости перевести МК на питание от автономного источника (батареи) и сохранить в этом режиме данные ОЗУ.

Объем памяти данных МК, как правило, невелик и составляет обычно десятки и сотни байт. Это обстоятельство необходимо учитывать при разработке программ для МК. Так, при программировании МК константы, если возможно, не хранятся как переменные, а заносятся в ПЗУ программ. Максимально используются аппаратные возможности МК, в частности, таймеры. Прикладные программы должны ориентироваться на работу без использования больших массивов данных.

Регистры МК

Как и все МПС, МК имеют набор регистров, которые используются для управления его ресурсами. В число этих регистров входят обычно регистры процессора (аккумулятор, регистры состояния, индексные регистры), регистры управления (регистры управления прерываниями, таймером), регистры, обеспечивающие ввод/вывод данных (регистры данных портов, регистры управления параллельным, последовательным или аналоговым вводом/выводом). Обращение к этим регистрам может производиться по-разному.

В МК с RISC-процессором все регистры (часто и аккумулятор) располагаются по явно задаваемым адресам. Это обеспечивает более высокую гибкость при работе процессора.

Одним из важных вопросов является размещение регистров в адресном пространстве МК. В некоторых МК все регистры и память данных располагаются в одном адресном пространстве. Это означает, что память данных совмещена с регистрами. Такой подход называется «отображением ресурсов МК на память».

В других МК адресное пространство устройств ввода/вывода отделено от общего пространства памяти. Отдельное пространство ввода/вывода дает некоторое преимущество процессорам с гарвардской архитектурой, обеспечивая возможность считывать команду во время обращения к регистру ввода/ вывода.

Стек МК

В микроконтроллерах ОЗУ данных используется также для организации вызова подпрограмм и обработки прерываний. При этих операциях содержимое программного счетчика и основных регистров (аккумулятор, регистр состояния и другие) сохраняется и затем восстанавливается при возврате к основной программе.

В фон-неймановской архитектуре единая область памяти используется, в том числе, и для реализации стека. При этом снижается производительность устройства, так как одновременный доступ к различным видам памяти невозможен. В частности, при выполнении команды вызова подпрограммы следующая команда выбирается после того, как в стек будет помещено содержимое программного счетчика.

В гарвардской архитектуре стековые операции производятся в специально выделенной для этой цели памяти. Это означает, что при выполнении программы вызова подпрограмм процессор с гарвардской архитектурой производит несколько действий одновременно.

Необходимо помнить, что МК обеих архитектур имеют ограниченную емкость памяти для хранения данных. Если в процессоре имеется отдельный стек и объем записанных в него данных превышает его емкость, то происходит циклическое изменение содержимого указателя стека, и он начинает ссылаться на ранее заполненную ячейку стека. Это означает, что после слишком большого количества вызовов подпрограмм в стеке окажется неправильный адрес возврата. Если МК использует общую область памяти для размещения данных и стека, то существует опасность, что при переполнении стека произойдет запись в область данных либо будет сде­лана попытка записи загружаемых в стек данных в область ПЗУ.

Внешняя память

Несмотря на существующую тенденцию по переходу к закрытой архитектуре МК, в некоторых случаях возникает необходимость подключения дополнительной внешней памяти (как памяти программ, так и данных).

Если МК содержит специальные аппаратные средства для подключе­ния внешней памяти, то эта операция производится штатным способом (как для МП).

Второй, более универсальный, способ заключается в том, чтобы использовать порты ввода/вывода для подключения внешней памяти и реализовать обращение к памяти программными средствами. Такой способ позволяет задействовать простые устройства ввода/вывода без реализации сложных шинных интерфейсов, однако приводит к снижению быстродействия системы при обращении к внешней памяти.

 



2015-12-06 1489 Обсуждений (0)
Процессорное ядро микроконтроллера 0.00 из 5.00 0 оценок









Обсуждение в статье: Процессорное ядро микроконтроллера

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1489)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)