М.6.8. Какие основные положения приняты в теории линейнодеформируемых тел?
Для того, чтобы можно было воспользоваться решениями задач, имеющимися в теории упругости, приняты следующие положения: 1. Грунт состоит обычно из трех компонентов: минерального скелета, воды и воздуха, однако возможно его рассматривать как квазисплошное тело, то есть тело, имеющее свойства сплош 2. Для грунта характерно наличие остаточных деформаций. При полном снятии нагрузки все деформации не исчезают, а упругие (то есть восстанавливающиеся) бывают часто значительно менее неупругих (остаточных) деформаций. Поэтому в теории линейнодеформируемых тел рассматривается только процесс нагрузки, а процесс разгрузки, если в том есть необходимость, рассматривается особо. 3. Считается, что нагрузки на грунт не вызывают его разрушения и далеки от предельных, поэтому в грунтовом массиве не возникает трещин, разрывов, срезов и т.д., то есть не нарушается "квазисплошность". 4. Связь между полными напряжениями и общими деформациями принимается линейной. Таким образом считается справедливым закон Гука, связывающий напряжения и деформации. Деформации считаются малыми. М.6.9. Чем теория линейнодеформируемых тел отличается от теории упругости? В теории упругости рассматриваются только упругие тела с восстанавливающими деформациями, а в теории линейнодеформируемых тел рассматриваются общие деформации, включающие также остаточную деформацию. М.6.10. Какую пользу мы получаем от того, что применяем теорию линейнодеформируемых тел? Поскольку в теории упругости основная система уравнений является линейной, это позволяет суммировать отдельные решения и интегрировать их. Такие сумма или интеграл также удовлетворяют основной системе дифференциальных уравнений теории упругости и поэтому будут являться искомыми решениями.
М.7. РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ В СЛУЧАЕ ДЕЙСТВИЯ СОСРЕДОТОЧЕННЫХ СИЛ М.7.1. Решение какой задачи теории упругости для полупространства является основным? Чем обусловлена возможность использования его для решения других практически важных задач? Основным является решение задачи о сосредоточенной силе, приложенной к поверхности полупространства перпендикулярно к граничной плоскости (задача Буссинеска). Для решения задач о нагрузке, имеющей горизонтальную составляющую, рассматривается дальнейшее развитие решения этой же задачи, но при сосредоточенной силе, действующей вдоль граничной плоскости (как бы "прикрепленной" к ней в одной точке, рис. М.7.1.). Аналогичные решения задач о сосредоточенных силах вертикальной и горизонтальной, то есть приложенных перпендикулярно (решение Фламана) и по касательной к границе полуплоскости, также являются основными. Из них путем интегрирования могут быть получены многие решения интересующих нас в практических целях задач.
М.7.2. Чему равны напряжения непосредственно под сосредоточенной силой? Какое предположение делается в отношении зоны, расположенной непосредственно у сосредоточенной силы? Задача эта является абстрактной, так как в действительности усилия всегда распределяются по некоторой площадке. Непосредственно под сосредоточенной силой напряжения являются бесконечно большими. Предполагается, что сплошная среда является бесконечно прочной и не может разрушаться. Буссинеск, чтобы обойти это обстоятельство, не рассматривал небольшую зону, непосредственно находящуюся у сосредоточенной силы. Читайте также: Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (362)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |