Мегаобучалка Главная | О нас | Обратная связь  


Функции ядер среднего мозга




В среднем мозге замыкается ряд рефлексов. Так, при участии нейронов бугров чет­верохолмия осуществляются ориентировочные зрительные и слуховые рефлексы. У жи­вотных они проявляются в повороте головы и тела по направлению к свету и звуку, настораживании ушей.

Ядра четверохолмия участвуют в осуществлении сторожевого рефлекса, существен­ным компонентом которого является усиление тонуса сгибателей.

Черная субстанция участвует в сложной координации движений. В ней сосредоточе­ны содержащие дофамин нейроны, многие из которых посылают аксоны в передний мозг. Они принимают участие в регуляции эмоционального поведения. Другая часть дофами- нергических нейронов черной субстанции посылает аксоны к ядрам полосатого тела, где дофамин играет важную роль в контроле сложных двигательных актов. Поврежде­ния черной субстанции, приводящие к дегенерации дофаминергических волокон, проеци­рующихся в полосатое тело, приводят к нарушению тонких движений пальцев рук, раз­витию мышечной ригидности и тремору (болезнь Паркинсона).

После перерезки ствола мозга ниже уровня красного ядра у животных наблюдается выраженное изменение тонуса мускулатуры туловища и конечностей — децеребрацион-
ная ригидность, т. е. резкое повышение тонуса мышц-разгибателей. Конечности при этом сильно вытянуты, голова запрокинута назад, хвост приподнят (рис. 89).



Развитие децеребрационной ригидности связано с выключением импульсации, посту­пающей в спинной мозг по кортико-спиналь- ному и руброспинальному трактам, которые активируют в первую очередь мотонейроны мышц-сгибателей. При этом начинает преоб­ладать активность вестибулоспинальной системы, повышающей тонус преимущест­венно мотонейронов мышц-разгибателей.

5*

МОЗЖЕЧОК

Мозжечок представляет собой образование, расположенное позади больших полу­шарий мозга над продолговатым мозгом и мостом мозга. В эволюционном плане он пред­ставляет собой очень древнюю структуру. Впервые мозжечок появляется у круглоротых и сохраняет принципиально сходные функции во всем филогенетическом ряду позвоноч­ных (от рыб до человека), будучи связан в первую очередь с моторной координацией. У млекопитающих и человека физиологическое значение мозжечка особенно возраста­ет, а его нейронная организация и структура отдельных нервных элементов достигает наибольшей сложности.

Анатомически в мозжечке можно выделить среднюю часть — червь, расположенные по обе стороны от нею полушария и боковые флоккулонодулярные доли. Последние филогенетически пред­ставляют самую древнюю часть мозжечка — аршоцеребеллум. Полушария мозжечка в свою оче­редь делятся на переднюю и заднюю доли. Передние доли полушарий и задняя часть червя мозжеч­ка составляют старый мозжечок — палеоцеребеллум. Наконец, филогенетически самая молодая часть мозжечка, связанная двусторонними связями с наиболее новыми образованиями мозга — новой корой,— неоцеребеллум, включает переднюю часть задних долей полушарий мозжечка.

В полушариях мозжечка выделяют верхнюю поверхность, образующую кору моз­жечка и скопления нервных клеток — ядра мозжечка. Мозжечок связан с другими отде­лами ЦНС тремя парами ножек, образованных пучками нервных волокон.

Нейронная организация. Нейронная организация мозжечка отличается исключи­тельной упорядоченностью. Кора мозжечка построена по единому принципу и состоит из 3 слоев. В поверхностном, или молекулярном, слое находятся дендритные разветвления грушевидных клеток (клетки Пуркинье), представляющих собой одни из наиболее слож­но устроенных нейронов мозга. Грушевидные клетки имеют чрезвычайно разветвленное дендритное дерево. Дендритные отростки, в особенности в дистальных частях, обильно покрыты шипиками. Многочисленные разветвления дендритов резко увеличивают пло­щадь поверхностной мембраны. Это создает условия для размещения огромного числа синапсов. Подсчитано, что один грушевидный нейрон имеет до 200 ООО синапсов. Кроме дендритов грушевидных клеток, в поверхностном слое располагаются так называемые параллельные волокна, представляющие собой аксоны многочисленных вставочных ней­ронов.

Рис. 80. Децеребрацнонная ригидность.

В нижней части молекулярного слоя находятся тела корзинчатых клеток, аксоны которых образуют синапгические контакты с телами грушевидных клеток. В молекуляр­ном слое также имеется некоторое число звездчатых клеток. Далее следует ганглиозный слой, в котором находятся тела грушевидных клеток. В следующем гранулярном слое ко­ры мозжечка находятся тела вставочных нейронов (клеток-зерен, или гранулярных кле­ток). Аксоны гранулярных клеток поднимаются в молекулярный слой, где они Т-образно разветвляются. В гранулярном слое находятся также клетки Гольджи, аксоны которых направляются в молекулярный слой.


Рис. 90. Синаптические сняли нейронов мозжечка |3kk.ic Дж, 1009[.

 

Схематически показаны шпбуждаюшие синапсы, образуемые на грушевидных нейронах (клетки ПуркинмЧ лазающими нолокнамн (JIB I. аксонами клеток-зерен (КЗ). которые в слою очередь активируются мшистыми волокнами (МВ). и тормозные синапсы обр л.юна мы аксон;] ми эпеддчатых [ЗвЮ н корзиичатык клеток; Т - торможение; В - возбуждение

В кору мозжечка поступают только два типа афферентных волокон: лазающие и мшистые (или моховидные). По этим каналам в мозжечок доставляются все сенсорные влияния. Лазающие волокна, являющиеся аксонами нейронов нижних олив, образуют синапсы с основаниями дендритов грушевидных клеток. Каждое лазающее волокно кон­тактирует обычно с одной грушевидной клеткой. Однако возбуждающее действие лаза­ющего волокна столь эффективно, что грушевидная клетка отвечает на одиночный им­пульс в лазающем волокне ритмическим разрядом потенциалов действия.

В противоположность лазающим волокнам, моховидные волокна характеризуются значительной дивергенцией. Разветвление одного моховидного волокна образуют синап­сы примерно на 20 вставочных нейронах, но не контактируют непосредственно с груше­видными клетками. Число вставочных нейронов примерно в 2300 раз превышает число клеток Пуркинье, аксоны их, разветвляясь в молекулярном слое, образуют систему па­раллельных волокон, оканчивающихся синапсами на более дистальных, покрытых много численными шипами дендритах грушевидных клеток. Указанные синапсы, как и синап­сы, образуемые лазающими волокнами, являются возбуждающими.

Мшистые волокна, кроме того, образуют синапсы с корзинчатыми клетками. Аксоны корзинчатых клеток образуют густые сплетения типа корзинок вокруг тел грушевидных клеток, обеспечивающие значительную площадь синаптических контактов. Синапсы меж­ду аксонами корзинчатых клеток и телами грушевидных нейронов являются тормозны­ми. Они обеспечивают эффективное торможение возбуждающих влияний, оказываемых на грушевидные клетки через аксодендритные синапсы, образуемые лазающими волок­нами и аксонами вставочных нейронов.

Наконец, мшистые волокна образуют синаптические контакты также с клетками Гольджи и звездчатыми клетками. Как и корзинчатые клетки, клетки Гольджи и звездча­тые клетки являются тормозными нейронами. Однако аксоны клеток Гольджи заканчива­ются не на грушевидных клетках, а на многих тысячах вставочных нейронов.

Схема синаптической организации нейронов коры мозжечка показана на рис. 90.


 

 


 

Рис. 91. Синаптические эффекты, вызываемые в поясничном мотонейроне обезьяны раздражением промежуточного ндра мозжечка (а), красного ядра (б) и обеих структур имеете (а+б). Верхняя кривая -- нанесение раздражении, нижняя кривая — ответы мотонейрона.

Если в кору мозжечка входит два типа афферентных волокон: лазающие и мшистые, то покидает ее всего лишь один тип эфферентных волокон, являющихся аксонами груше­видных нейронов (нейроны Пуркинье). Таким образом, грушевидные клетки образуют единственный выход всей сложно организованной нейронной системы, составляющей кору мозжечка. Другим отличительным свойством грушевидных клеток является то, что все они являются тормозными нейронами, т. е. образуют тормозящие синапсы со всеми клетками, с которыми они контактируют. Тормозные постсинаптические потенциалы при активации грушевидных клеток возникают в нейронах собственных ядер мозжечка и в нейронах вестибулярных ядер.

В мозжечок поступает информация из различных сенсорных систем. Афферентные сигналы достигают мозжечка по различным путям, которые можно подразделить на сле­дующие группы: восходящие от спинного мозга (по спинно-мозжечковым трактам), от вестибулярных рецепторов, от нижней оливы и от ретикулярной формации заднего мозга.

Волокна дорсального и вентрального спинно-мозжечковых трактов доставляют в мозжечок информацию о состоянии мышечного аппарата.-

Спинно-ретикуломозжечковый тракт имеет переключение в латеральном ретикуляр­ном ядре продолговатого мозга. По этому пути в мозжечок поступает информация от кожи и более глубоких тканей.

Важный афферентный вход кора мозжечка получает из нижней оливы, где происхо­дит переключение импульсов, поступающих по нескольким путям, берущим начало как в спинном мозге, так и в структурах головного мозга. Значительную роль при этом играют сигналы, поступающие в его кору из больших полушарий по мшистым и лазающим волокнам.

Наконец, в коруфлоккулонодулярной доли приходят первичные и вторичные вести­булярные афферентные влияния.

Из красного ядра к мозжечку подходят коллатерали руброспинальных аксонов. Ней­роны промежуточного ядра мозжечка посылают волокна к клеткам красного ядра. Синапсы, образуемые этими волокнами на руброспинальных нейронах, являются возбуж­дающими и характеризуются высокой эффективностью. Поэтому раздражение проме­жуточного ядра мозжечка вызывает в спинальных мотонейронах ответы, сходные с теми, которые возникают при стимуляции красного ядра (рис. 91).

Нейроны других мозжечковых ядер образуют возбуждающие синапсы на ретикуло­спинальных нейронах продолговатого мозга и моста. Итак, вся информация, приходя­щая в мозжечок, передается грушевидным клеткам или клеткам Пуркинье, а те в свою очередь оказывают тормозящее влияние на ядра мозжечка (а через них тормозят актив­ность ретикуло- и руброспинальных нейронов) и на нейроны преддверного латерального ядра (ядро Дейтерса), дающие начало вестибулоспинальному тракту. Таким образом, мозжечок может эффективно контролировать значительную часть команд, поступающих в спинной мозг по основным нисходящим трактам. Действительно, после удаления моз­жечка ритмика вестибуло-, ретикуло- и руброспинальных нейронов, которая в норме из­меняется в соответствии с выполнением определенной части двигательного акта, переста­ет зависеть от двигательных циклов.

Функции мозжечка

Несмотря на исключительную упорядоченность нейронной организации мозжечка, благодаря которой его сравнивают со своего рода нейронной машиной, его функциональ­ная роль раскрыта еще не полностью.

Клинические проявления, развивающиеся при поражении мозжечка, а также эффек­ты, наблюдаемые при его раздражении или экстирпации, свидетельствуют о важной роли мозжечка в осуществлении статических, статокинетических рефлексов и других процессов управления двигательной активностью, автоматически регулирующих работу двига­тельного аппарата.

Экспериментальные и клинические наблюдения показывают, что при поражениях мозжечка развиваются разнообразные нарушения двигательной активности и мышечного тонуса, а также вегетативные расстройства. Основные проявления расстройств двига­тельной системы включают нарушения равновесия и мышечного тонуса: тремор, атаксию и асинергию движений.

Полное удаление мозжечка или его передней доли у животных приводит к повыше­нию тонуса мышц-разгибателей, в то время как раздражение передней доли — к сни­жению этого тонуса (торможение децеребрационной ригидности).

Через несколько суток после удаления мозжечка тонус разгибателей ослабляется, сменяясь гипотонией, лежащей в основе двигательных нарушений. В этот период живот­ные с удаленным мозжечком не могут не только ходить, но и стоять и в то же время спо­собны хорошо плавать.

Многие клинические проявления, свидетельствующие о мозжечковой недостаточно­сти, связаны с мышечной атонией и неспособностью поддерживать позу. После исследо­вания коленного рефлекса или смещения пассивно висящей конечности нога не возвра­щается в исходное положение, а раскачивается подобно маятнику.

Одно из наиболее характерных проявлений мозжечковой недостаточности — воз­никновение тремора. Тремор покоя характеризуется небольшой амплитудой, колебания протекают синхронно в разных сегментах тела. Для мозжечковых повреждений характер­на также атаксия: нарушение величины, скорости и направления движений, что приво­дит к утрате плавности и стабильности двигательных реакций. Целенаправленные дви­жения, например попытка взять предмет, выполняются порывисто, рывками, промахами мимо цели. Атаксический тремор наблюдается при выполнении произвольных движений, будучи наиболее выражен в начале и в конце движения, а также при перемене его направ­ления.

Асинергия проявляется также нарушением взаимодействия между двигательными центрами различных мышц. Так, у больных при выполнении движений не происходит одновременного сокращения мышц, компенсирующих смещение центра тяжести. Делая шаг, больной выносит ногу, не сгибая, впереди туловища, что приводит к падению. В ре­зультате асинергии сложные движения как бы распадаются на ряд выполняемых после­довательно более простых движений.

Разновидностью асинергии можно считать характерный для поражения мозжечка симптом — адиадохокинез — нарушение правильного чередования противоположных движений, например сгибания и разгибания пальцев.

Итак, расстройство равновесия и тонуса скелетной мускулатуры приводит к харак­терным нарушениям в осуществлении произвольных движений. Особенно сильно затруд­няется выполнение задач, связанных с необходимостью точно коснуться какого-либо предмета. Нарушение двигательной координации — астазия — характеризуется появле­нием качательньгх и дрожательных движений. Нарушение локомоции — атаксия — про­является расстройством походки, которая становится неровной, зигзагообразной.

Наступает неадекватное перераспределение мышечного тонуса — дистония. Локаль­ные повреждения небольших участков коры передней доли мозжечка позволили вы­явить локализацию в ней представительства различных участков скелетной мус­кулатуры.

Нарушение двигательной координации при поражениях мозжечка объясняется тесными связями его с основными структурами ствола мозга (дающими начало трактам, передающим импульсы в спинной мозг), а также с таламусом и сенсомоторной областью коры больших полушарий.

Одна из главных проекций мозжечка направлена к нейронам ретикулярной форма­ции ствола, особенно к тем из ретикулоспинальных клеток, аксоны которых отличаются наиболее высокой скоростью проведения возбуждения. Учитывая, что последние устанав­ливают контакты с а- и у-мотонейронами, можно заключить, что через ретикулоспиналь- ный путь обеспечивается срочная передача мозжечковых команд непосредственно к этим ключевым элементам спинального управления движениями.

Ретикулоспинальные нейроны находятся под мозжечковым контролем, после устра­нения которого участие их в центральной регуляции движений резко нарушается.

Связи между мозжечкам и преддверным латеральным ядром (ядро Дейтерса), да­ющим начало вестибулоспинальному тракту, настолько тесны и характерны, что это вес­тибулярное ядро функционально можно рассматривать как ядро мозжечка, вынесенное в продолговатый мозг. Значительная часть мозжечкового возбуждающего и тормозяще­го контроля спинальных центров обеспечивается с помощью вестибулоспинальных ней­ронов.

Команды из промежуточной коры и промежуточного ядра мозжечка передаются к спинному мозгу через нейроны красного ядра.

Таким образом, нейронная организация мозжечка обеспечивает поступление в его кору разнообразной афферентной информации, в том числе от различных компонентов двигательного аппарата, сложную обработку этой информации в нейронах и синапсах мозжечка и эффективную передачу корригирующих влияний к нейронам стволовых и спинальных центров моторного контроля.

Как было показано JI. А. Орбели, мозжечок играет также важную роль в регуля­ции вегетативных функций за счет многочисленных синаптических связей с ретикуляр­ной формацией ствола мозга.

ПРОМЕЖУТОЧНЫЙ МОЗГ

Промежуточный мозг образует стенки III желудочка. В процессе эмбриогенеза он формируется вместе с большими полушариями из переднего мозгового пузыря.

Главными структурами промежуточного мозга являются таламус, или зрительный бугор, и гипоталамус, или подбугроеая область. Ядра таламуса расположены главным образом в области боковой стенки III желудочка; ядра гипоталамуса образуют его ниж­нюю и нижнебоковую стенки. Верхняя часть III желудочка образована сводом и эпифи­зом (эпиталаму с).

В глубине мозговой ткани промежуточного мозга расположены ядра наружных и внутренних коленчатых тел. Наружная граница промежуточного мозга проходит лате- ральнее коленчатых тел и образована белым веществом внутренней капсулы, отделяю­щей промежуточный мозг от подкорковых ядер конечного мозга.

ТАЛАМУС

Нейронная организация. Нервные клетки таламуса, группируясь, образуют большое количество ядер: всего различают до 40 таких образований. Топографически все они могут быть подразделены на несколько основных групп: передние, интраламинарньге, срединные и задние. В каждой из этих основных групп различают более мелкие ядра, от­личающиеся друг от друга как нейронной организацией, так и особенностями афферен­тных и эфферентных проекций. С функциональной точки зрения принято различать не­специфические и специфические ядра таламуса. Нейроны неспецифических ядер посы­лают аксоны диффузно ко всей новой коре, в то время как нейроны специфических ядер образуют связи только с клетками определенных корковых полей (рис. 92). Неспецифи­ческие ядра являются по своему происхождению более древними и включают срединные и интраламинарные ядра, а также медиальную часть переднего вентрального ядра. Ней­роны неспецифических ядер сначала передают сигналы в подкорковые структуры, от которых импульсация поступает параллельно в разные отделы коры. Не специфические ядра являются продолжением ретикулярной формации среднего мозга, представляя со­бой ретикулярную формацию таламуса.

На нейронах специфических ядер заканчиваются волокна различных восходящих трактов. Аксоны этих нейронов образуют прямые моносинаптические связи с нейронами сенсорной и ассоциативной коры. К клеткам ядер латеральной группы таламуса, включа­ющих заднее вентральное ядро, поступают импульсы от кожных рецепторов, двигатель­ного аппарата, а также мозжечково-таламического пути.

Другая часть специфических ядер таламуса входит в состав задней группы и образу­ет медиальное и латеральное коленчатые тела. На нейронах латерального коленчатого те­ла заканчиваются афферентные пути зрительной системы. Нейроны медиального колен­чатого тела воспринимают сигналы от нейронов слуховых ядер продолговатого мозга и задних бугров четверохолмия.

Нейроны специфического комплекса ядер посылают по направлению к коре аксоны, почти не имеющие коллатералей. В отличие от него нейроны неспецифической системы посылают аксоны, дающие множество коллатералей. Вместе с тем и волокна, приходя­щие из коры к нейронам специфических ядер, характеризуются топографической локали- зованностью своих окончаний в противоположность широко разветвленной системе диф- фузно оканчивающихся волокон в неспецифических ядрах.

Функции таламуса

Все сенсорные сигналы, за исключением возникающих в обонятельном тракте, до­стигают коры больших полушарий только через таламокортикальные проекции. Таламус представляет собой своего рода ворота, через которые в кору поступает и достигает сознания основная информация об окружающем нас мире и о состоянии нашего тела.

Тот факт, что афферентные сигналы на пути к коре мозга переключаются на нейро­нах таламуса, имеет важное значение. Тормозные влияния, приходящие в таламус из ко­ры, других образований и соседних таламических ядер, позволяют обеспечить лучшую пе­редачу в кору мозга наиболее важной информации. Торможение подавляет слабые воз­буждающие влияния, благодаря чему выделяется наиболее важная информация, при­ходящая в таламус от различных рецепторов.

Через неспецифические ядра таламуса в кору мозга поступают восходящие активи­рующие влияния от ретикулярной формации мозгового ствола. Система неспецифических ядер таламуса осуществляет контроль ритмической активности коры больших полушарий и выполняет функции внутриталамической интегрирующей системы.

Электрическое раздражение неспецифических ядер таламуса вызывает в коре боль­ших полушарий периодические колебания потенциалов, синхронные с ритмом активности таламических структур. Реакция в коре возникает с большим скрытым периодом и значи­тельно усиливается при повторении. Таким образом, нейроны коры больших полушарий вовлекаются в процесс активности как бы постепенно. Такая реакция вовлечения коры мозга отличается от специфических ее ответов своей' генерализованностью, охватом об­ширных областей коры. Активацию нейронов неспецифических ядер таламуса особенно эффективно вызывают болевые сигналы (таламус является высшим центром болевой чувствительности). Импульсы, идущие по путям болевой чувствительности, формируются при раздражении различных областей тела и внутренних органов. Скрытые периоды ответов в таламусе отличаются большой длительностью и вариабельностью.

Наблюдения, проведенные на людях во время хирургических операций, показывают, что повреждения неспецифических ядер таламуса приводят к нарушениям сознания. Это

Рис. 93. Схематическое изображение основ­ных ядер гипоталамуса. I — передняя комиссура; 2 — прсоптиче* с кое ядро; 3 - супраоптическое ядро; 4 — ножка гипофиза; 5 — йентромедиальное гипоталамическое ядро; 6 — до рсо меди­альное гипоталамическое ядро; 7 меди­альное ядро мамиллнрнош тела; 8 — ма- миллярно-галамический лучок: 9- заднее гипоталамическое ядро; 10 - паравентри- кулярное ядро.

 




Читайте также:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1329)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.023 сек.)