Мегаобучалка Главная | О нас | Обратная связь


Задача Дирихле для уравнения Лапласа – интеграл Пуассона



2015-12-06 1075 Обсуждений (0)
Задача Дирихле для уравнения Лапласа – интеграл Пуассона 0.00 из 5.00 0 оценок




Уравнению Лапласа удовлетворяет не только потенциал гравитационного поля вне области содержащий источники, но и все его производные вместе с их линейными комбинациями. Этому уравнению в свободном пространстве, т.е. в области, где отсутствуют источники, удовлетворяют и многие другие геофизические поля – компоненты напряженности магнитного поля, естественного электрического, теплового для установившегося температурного режима поля при постоянных электропроводности и теплопроводности среды. Уравнение Лапласа это фундаментальное внеметодное уравнение в геофизике, а функции ему удовлетворяющие называются гармоническими.

Задачей Дирихледля уравнения Лапласа называется задача нахождения значений гармонической функции внутри области по ее граничным – краевым значениям на границе области. Ее также называют задачей аналитического продолжения потенциального поля. Это устоявшееся, но не совсем удачное название. Формально краевая задача Дирихле записывается следующим образом:

Г – граница области V.

На самом деле для однозначности ее решения необходимо добавление еще дополнительных условий. Однако в некоторых частных случаях достаточно простейших из них.

Частным случаем этой задачи является задача Дирихле для полупространства. Формулируется она следующим образом. Пусть плоскость , разбивает все пространство на нижнее , в котором сконцентрированы все источники поля, и верхнее , в котором источники заведомо отсутствуют. Гармоническая в области функция задана своими краевыми значениями на . Считаем, что непрерывна на и стремится к нулю на бесконечности. Тогда значения в любой точке области находится по с помощью известного интеграла Пуассона, дающего решение задачи Дирихле для полупространства:

(2.6)

.

В двухмерном случае интеграл Пуассона имеет вид:

(2.6а)

Каждое из приведенных соотношений может быть также как и ранее, записано в операторной форме:

. (2.7)

Расчет интеграла Пуассона, как для двухмерного, так и для трехмерного случаев является типичной задачей из области решения уравнений математической физики. Она не содержит «подводных камней». Она имеет решение, это решение единственно и устойчиво зависит от начальных данных во всех имеющих смысл нормах. Степень гладкости продолженного поля, т.е. для (6) всегда выше, чем степень гладкости краевых значений . Мы пока обращаемся к интуитивному пониманию смысла гладкости. Однако, эта задача может рассматриваться и как обратная задача – нахождения по известному или на некотором множестве в значения этих функций на . В операторной постановке (7) это соответствует расчету величины u под знаком оператора A по заданной правой части y. При попытке решения этой обратной задачи возникает целый «букет» неприятностей, которые почти очевидны. Они начинаются с того, что совсем не факт, что решение будет существовать для конкретных данных. И уже совершенно очевиден факт, что гладкость результата будет ниже, и даже катастрофически ниже гладкости исходных данных. Решение будет неустойчиво, разваливаться от малейших вариаций исходных данных. Это проявление тех же эффектов, предупреждение о которых было сделано выше



2015-12-06 1075 Обсуждений (0)
Задача Дирихле для уравнения Лапласа – интеграл Пуассона 0.00 из 5.00 0 оценок









Обсуждение в статье: Задача Дирихле для уравнения Лапласа – интеграл Пуассона

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1075)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)