Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений
РАЗДЕЛ 1. ОБЩИЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОУСТАНОВКАХ ЛЕКЦИЯ 1. ТЕМА 1.1–1.3 (2 часа). План 1.1. Введение. Краткая историческая справка о развитии электроэнергетики. 1.2. Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений. 1.3. Основные типы станций: ТЭЦ, КЭС, ГЭС, АЭС, ГТУ, ПГУ. Возобновляемые источники энергии: ГэоЭС, ВЭС, ПЭС и др.
Введение. Краткая историческая справка о развитии Электроэнергетики
Топливно-энергетический комплекс страны охватывает получение, передачу, преобразование и использование различных видов энергии и энергетических ресурсов. Электроэнергетика– ведущая составляющая часть энергетики, обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии. Основная часть электроэнергии вырабатывается крупными электростанциями. Электростанции объединены между собой и с потребителями высоковольтными линиями электропередачи (ЛЭП) и образуют электрические системы. Начало применения электричества положили открытие электрической дуги В. В. Петровым (1802 г.), изобретение П. Н. Яблочковым электрической дуговой свечи (1876 г.) и А. Н. Лодыгиным лампы накаливания (1873–1874 гг.). Промышленное применение электроэнергии началось с создания Б. С. Якоби первого практически применимого электродвигателя с вращательным движением (1834–1837 гг.) и изобретения гальванопластики (1838 г.). В 1882 г. Н. Н. Бенардос открыл способ электросварки металлов. Первые центральные электростанции постоянного тока мощностью несколько десятков, а позднее несколько сотен киловатт были сооружены в 80-х и начале 90-х годов XIX в. в Москве, Петербурге, Царском селе (ныне г. Пуш-кин) и ряде других городов. Эти электростанции почти не имели силовой нагрузки, и только с 1892 г., когда был пущен электрический трамвай в Киеве (первый трамвай в России), появляется некоторая силовая нагрузка у станций постоянного тока. Небольшое напряжение станций постоянного тока (110–220 В) ограничивало радиус их действия, а тем самым и их мощность. Изобретение силового трансформатора (П. Н. Яблочков, 1876 г.) открыло возможность применения переменного тока высокого напряжения и значительно увеличило радиус действия электростанций. Первые центральные электростанции однофазного переменного тока напряжением 2–2,4 кВ были сооружены в Одессе (1887 г.), Царском селе (1890 г.), Петербурге (1894 г.) и ряде других городов. Переломным моментом в развитии электроснабжения вообще и электростанций в частности явилось создание в 1888–1889 гг. выдающимся русским инженером М. О. Доливо-Добровольским системы трёхфазного переменного тока. Им впервые были созданы трёхфазные синхронные генераторы, трёхфазные трансформаторы и, что особенно важно, трёхфазные асинхронные электродвигатели с короткозамкнутым и фазным роторами. Первая в России электростанция трёхфазного тока мощностью 1200 кВ∙А была сооружена инженером А. Н. Щенсновичем в 1893 г. в Новороссийске. Станция предназначалась для электрификации элеватора. Подводя общие итоги развития электроэнергетики в дореволюционной России, можно сказать, что установленная мощность всех электростанций России в 1913 г. составляла около 1100 МВт при производстве электроэнергии около 2 млрд. кВт ∙ ч в год. По уровню производства электроэнергии Россия занимала 15-е место в мире. План ГОЭЛРО, принятый в 1920 г., предусматривал увеличение объёма промышленного производства в стране примерно в 2 раза по сравнению с 1913 г. Основой такого роста промышленности, было намечавшееся в течение 10–15 лет сооружение 30 районных электростанций в различных регионах страны общей мощностью 1750 МВт. Выработку электроэнергии предполагалось довести до 8,8 млрд. кВт ∙ ч в год. План ГОЭЛРО был выполнен к 1 января 1931 г., то есть за 10 лет. Установленная мощность электростанций и выработка электроэнергии в различные исторические периоды приведены в табл. 1.1.
Таблица 1.1
Окончание табл. 1.1
С начала 90-х годов XX в. в топливно-энергетическом комплексе происходят кризисные явления. В отдельных районах наблюдается дефицит электроэнергии. Возросли требования к охране окружающей среды. России нужна новая энергетическая политика, которая была бы достаточно гибкой. Обязательно должна быть сохранена целостность электроэнергетического комплекса и ЕЭС России. Важна поддержка независимых производителей энергоносителей, ориентированных на использование возобновляемых или местных энергетических ресурсов. В итоге проведения реформы будут достигнуты следующие результаты: – увеличится объём инвестиций в электроэнергетику, и как следствие, ускорится процесс модернизации отрасли, повысится её эффективность; – изменения в электроэнергетике будут способствовать развитию смежных отраслей: поставщиков оборудования, топлива и т. д.; – сократится средний удельный расход электроэнергии; – возрастёт надежность энергоснабжения потребителей; – возникнут рыночные, экономические стимулы для независимого производства электроэнергии и развития межсистемных связей. Энергетическая стратегия определила объёмы вводов на электростанциях России на период до 2020 г. В оптимистическом варианте они оцениваются в 177 млн. кВт, в том числе на ГЭС и ГАЭС – 11,2 млн. кВт, на АЭС – 23 млн. кВт, на ТЭС – 143 млн. кВт (рис. 1.2). При этом объёмы вводов на замену устаревшего оборудования (техническое перевооружение) должны составить около 76 млн. кВт. В умеренном варианте потребность во вводе генерирующих мощностей составит 121 млн. кВт, из них 70 млн. кВт на техническое перевооружение. С учётом увеличения экспорта производство электроэнергии к 2020 г. составит 1215–1365 млрд. кВт · ч. При этом намечается значительный рост производства электроэнергии: на АЭС – со 142 млрд. кВт · ч в 2002 г. до 230–300 млрд. кВт · ч в 2020 г., на ГЭС – со 164 млрд. кВт · ч в 2002 г. до 195–215 млрд. кВт · ч в 2020 г. Как и в настоящее время, в перспективе особенности территориального размещения топливно-энергетических ресурсов будут определять структуру вводов мощностей. Условные обозначения, система заземления нейтралей. Стандартная шкала мощностей и напряжений
В электрических схемах электроустановок приняты следующие буквенные и графические обозначения некоторых элементов при однолинейном изображении (табл. 1.2). Выключатели (Q) предназначены для включения и отключения электрических присоединений в нормальном режиме, а также при коротких замыканиях (КЗ) с большими токами. Выключатели, предусмотренные в СШ, называют секционными (QB). В РУ при нормальной работе они замкнуты, но должны автоматически размыкаться при КЗ. Разъединители (QS) изолируют (отделяют) на время ремонта в целях безопасности электрические машины, трансформаторы, линии электропередач, аппараты и другие элементы от смежных частей, находящихся под напряжением. Они способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе. Операции с разъединителями и выключателями должны выполняться в строго определённом порядке. Разъединители размещают так, чтобы любой аппарат или часть РУ могли быть изолированы для безопасного доступа и ремонта. Необходимо также заземлить участок системы, подлежащей ремонту. Для этого у разъединителей предусматривают заземляющие ножи (QSG), с помощью которых изолированный участок может быть заземлен с двух сторон, т. е. соединён с заземляющим устройством. Заземляющие ножи снабжают отдельными приводами. Нормально заземляющие ножи отключены. Разъединители используют также для переключений с одной системы СШ на другую без разрыва тока в цепях. Токоограничивающие реакторы (LR) представляют собой индуктивные сопротивления, предназначенные для ограничения тока КЗ в защищаемой зоне. В зависимости от места включения различают реакторы секционные и линейные. Измерительные трансформаторы тока(ТА) предназначены для преобразования тока до значений, удобных для измерений. Измерительные трансформаторы напряжения (TV) предназначены для напряжений, удобных для измерений. В принципиальных схемах измерительные трансформаторы напряжения обычно не показывают. Вентильные разрядники(FV), а также ограничители перенапряжений предназначены для защиты изоляции электрооборудования от атмосферных перенапряжений. Они должны быть установлены около трансформаторов или электроаппаратов в пределах станции, подстанции, РУ. Примеры обозначений условных графических и буквенных кодов элементов электрических схем приведены в в табл. 1.2. Таблица 1.2
Генераторы, трансформаторы и другие элементы электрическихсистем имеют нейтрали, режим работы которых (способ рабочего заземления) влияет на технико-экономические параметры и характеристики электрических сетей (уровень изоляции, требования к средствам защиты его от перенапряжений и других анормальных режимов, надёжность, капиталовложения и т. п.). Электрические сети в зависимости от режима нейтрали условно можно разделить на четыре группы: сети незаземлённые (с изолированной нейтралью) – 660, 1140 В и 3–35 кВ, сети резонансно-заземлённые (сети с компенсацией ёмкостных токов) – 3–35 кВ, сети эффективно-заземлённые 110–220 кВ и сети глухозазёмленные – 220, 380 В и 330–1150 кВ. При небольших значениях ёмкостного тока однофазного замыкания на землю IC (для генераторов менее 5 А, для сетей до 35 кВ менее 10 А) дуга не возникает, либо гаснет без повторных зажиганий и сопровождающих их перенапряжений. Треугольник междуфазных напряжений остаётся неизменным, повреждённое оборудование и участки сети остаются в работе в течение нескольких часов, необходимых для отыскания и отключения места повреждения, электроснабжение потребителей не нарушается (положительный эффект). Напряжения неповреждённых фаз вырастают до междуфазного значения, что требует дополнительных расходов на изоляцию (отрицательный эффект). В целом, учитывая невысокий класс напряжения, имеем положительный экономический эффект. Если ток однофазного замыкания на землю превышает указанные значения, дуга носит перемежающийся характер (неоднократные повторные зажигания дуги), сопровождается значительными перенапряжениями и возможностью перехода однофазного замыкания в междуфазные (многофазные). Компенсация ёмкостного тока на землю осуществляется с помощью регулируемых или нерегулируемых дугогосящих реакторов (резисторов), включаемых в нейтрали генераторов или трансформаторов. Если дуга не возникает, то замедляется процесс разрушения изоляции. В электрических сетях с эффективно-заземлёнными нейтралями для выполнения желательного по условиям работы электрических аппаратов соотношения токов однофазного и трёхфазного коротких замыканий В сетях 330 кВ и выше разземление нейтралей трансформаторов не допускается. Согласно ГОСТ 724-74 и ГОСТ 21128-83 установлена шкала номинальных напряжений электрических сетей постоянного и переменного (50 Гц) токов: постоянный ток до 1000 В – 12, 24, 36, 48, 60, 110, 220, 440 В; трёхфазный ток до 1000 В (междуфазное напряжение) – 12, 24, 36, 42, 220/127, 380/220, 600/380 В, более 1000 В – (3), 6, 10, 20, 35, 110, (150), 220, 330, 500, 750, 1150 кВ. Для турбогенераторов по ГОСТ 533-85 номинальные напряжения, кВ – 3,15, 6,3, 10,5, 15,75, 18, 20, 24, номинальная мощность, МВт – 2,5, 4, 6, 12, 32, 63, 110, 160, 220, 320, 500, 800, 1000, 1200. Номинальные параметры электрооборудования – это параметры, определяющие свойства электрооборудования: Uн, Iн и многие другие. Их назначают заводы-изготовители. Они указываются в каталогах и справочниках, на щитках оборудования. Номинальное напряжение – это базисное напряжение из стандартизированного ряда напряжений, определяющих уровень изоляции сети и электрооборудования. Действительные напряжения в различных точках системы могут несколько отличаются от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы. Номинальным напряжением генераторов, трансформаторов, сетей и приемников электроэнергии (электродвигателей, ламп и др.) называется то напряжение, при котором они предназначены для нормальной работы.
Таблица 1.3 Стандартные напряжения трёхфазного тока
Номинальные напряжения для генераторов, синхронных компенсаторов, вторичных обмоток силовых трансформаторов приняты на 5-10 % выше номинальных напряжений соответствующих сетей, чем учитываются потери напряжения при протекании тока по линиям.
Читайте также: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (889)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |