Мегаобучалка Главная | О нас | Обратная связь


Примеры решения систем линейных алгебраических уравнений матричным методом



2015-12-07 2346 Обсуждений (0)
Примеры решения систем линейных алгебраических уравнений матричным методом 0.00 из 5.00 0 оценок




Матричный метод решения систем линейных алгебраических уравнений - вывод формулы.

Пусть для матрицы А порядка n на n существует обратная матрица . Умножим обе части матричного уравнения слева на (порядки матриц A ⋅ X и Впозволяют произвести такую операцию, смотрите статью операции над матрицами, свойства операций). Имеем . Так как для операции умножения матриц подходящих порядков характерно свойство ассоциативности, то последнее равенство можно переписать как , а по определению обратной матрицы (E – единичная матрица порядка n на n), поэтому

Таким образом, решение системы линейных алгебраических уравнений матричным методом определяется по формуле . Другими словами, решение СЛАУ находится с помощью обратной матрицы .

Мы знаем, что квадратная матрица А порядка n на n имеет обратную матрицу только тогда, когда ее определитель не равен нулю. Следовательно, СИСТЕМУ nЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С n НЕИЗВЕСТНЫМИ МОЖНО РЕШАТЬ МАТРИЧНЫМ МЕТОДОМ ТОЛЬКО ТОГДА, КОГДА ОПРЕДЕЛИТЕЛЬ ОСНОВНОЙ МАТРИЦЫ СИСТЕМЫ ОТЛИЧЕН ОТ НУЛЯ.

К началу страницы

Примеры решения систем линейных алгебраических уравнений матричным методом.

Рассмотрим матричный метод на примерах. В некоторых примерах мы не будем подробно описывать процесс вычисления определителей матриц, при необходимости обращайтесь к статье вычисление определителя матрицы.

Пример.

С помощью обратной матрицы найдите решение системы линейных уравнений .

Решение.

В матричной форме исходная система запишется как , где . Вычислим определитель основной матрицы и убедимся, что он отличен от нуля. В противном случае мы не сможем решить систему матричным методом. Имеем , следовательно, для матрицы А может быть найдена обратная матрица . Таким образом, если мы отыщем обратную матрицу, то искомое решение СЛАУ определим как . Итак, задача свелась к построению обратной матрицы . Найдем ее.

Мы знаем, что для матрицы обратная матрица может быть найдена как , где - алгебраические дополнения элементов .

В нашем случае

Тогда

Выполним проверку полученного решения , подставив его в матричную форму исходной системы уравнений . Это равенство должно обратиться в тождество, в противном случае где-то была допущена ошибка.

Следовательно, решение найдено верно.

Ответ:

или в другой записи .

Пример.

Решите СЛАУ матричным методом.

Решение.

Первое уравнение системы не содержит неизвестной переменной x2, второе –x1, третье – x3. То есть, коэффициенты перед этими неизвестными переменными равны нулю. Перепишем систему уравнений как . От такого вида проще перейти к матричной форме записи СЛАУ . Убедимся в том, что эта система уравнений может быть решена с помощью обратной матрицы. Другими словами, покажем что :

Построим обратную матрицу с помощью матрицы из алгебраических дополнений:

тогда,

Осталось найти решение СЛАУ:

Рекомендуем выполнить проверку.

Ответ:

.

При переходе от обычного вида системы линейных алгебраических уравнений к ее матричной форме следует быть внимательным с порядком следования неизвестных переменных в уравнениях системы. К примеру, СЛАУ НЕЛЬЗЯ записать как . Нужно сначала упорядочить все неизвестные переменные во всех уравнениях системы, а потом переходить к матричной записи:

или

Также будьте внимательны с обозначением неизвестных переменных, вместоx1, x2, …, xn могут быть любые другие буквы. Например, СЛАУ в матричной форме запишется как .

Разберем пример.

Пример.

Найдите решение системы линейных алгебраических уравнений с помощью обратной матрицы.

Решение.

Упорядочив неизвестные переменные в уравнениях системы, запишем ее в матичной форме . Вычислим определитель основной матрицы:

Он отличен от нуля, поэтому решение системы уравнений может быть найдено с помощью обратной матрицы как . Найдем обратную матрицу по формуле :

Получим искомое решение:

Ответ:

x = 0, y = -2, z = 3.

Пример.

Найдите решение системы линейных алгебраических уравнений матричным методом.

Решение.

Определитель основной матрицы системы равен нулю

поэтому, мы не можем применить матричный метод.

Нахождение решения подобных систем описано в разделе решение систем линейных алгебраических уравнений.

Пример.

Решите СЛАУ матричным методом, - некоторое действительное число.

Решение.

Система уравнений в матричной форме имеет вид . Вычислим определитель основной матрицы системы и убедимся в том, что он отличен от нуля:

Квадратных трехчлен не обращается в ноль ни при каких действительных значениях , так как его дискриминант отрицателен , поэтому определитель основной матрицы системы не равен нулю ни при каких действительных . По матричному методу имеем . Построим обратную матрицу по формуле :

Тогда

Рекомендуем выполнить проверку полученного результата.

Ответ:

.К началу страницы

Подведем итог.

Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля. Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.

 



2015-12-07 2346 Обсуждений (0)
Примеры решения систем линейных алгебраических уравнений матричным методом 0.00 из 5.00 0 оценок









Обсуждение в статье: Примеры решения систем линейных алгебраических уравнений матричным методом

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2346)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)