Мегаобучалка Главная | О нас | Обратная связь  


Тригонометрическая форма записи комплексного числа




Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Если точка z комплексной плоскости имеет декартовые координаты (х, у), т.е. и полярные , то они связаны соотношением (1):

.

По определению, и из (1) получаем:

. (9)

Подставляя в алгебраическую форму записи числа z получаем: . Или

(10)

Определение. Запись комплексного числа в виде (3) называется еготригонометрической формой.

Замечание. Поскольку одну букву писать экономнее нежели несколько, то чаще всего тригонометрическую форму комплексного числа пишут в виде:

, (11)

где .

Теорема. (О равенстве комплексных чисел в тригонометрической форме.)

Два комплексных числа равны тогда и только тогда, когда равны их модули и аргументы.

Доказательство. Так как между всеми комплексными числами и всемиточками комплексной плоскости существует взаимно однозначное соответствие, то равные комплексные числа отождествляются накомплексной плоскости с одной и той же точкой, следовательно, имеют одни и те же полярные координаты, т.е. полярный радиус, который по определению равен модулю комплексного числа, и полярный угол, который по определению равен аргументу комплексного числа. Обратно, если комплексные числа имеют равные модули и аргументы, то они изображаются на комплексной плоскости одной точкой и, следовательно, равны.



Теорема доказана.

Используя соотношения, которые связывают полярные и декартовыекоординаты точки плоскости, можно найти модуль и аргумент комплексного числа зная его действительную и мнимую части.

 

Сопряжённые числа

Геометрическое представление сопряжённых чисел

Если комплексное число , то число называется сопряжённым (или комплексно сопряжённым) к (обозначается также ). На комплексной плоскости сопряжённые числа получаются зеркальным отражением друг друга относительно вещественной оси. Модуль сопряжённого числа такой же, как у исходного, а их аргументы отличаются знаком.

Переход к сопряжённому числу можно рассматривать как одноместную операцию; перечислим её свойства.

· (сопряжённое к сопряжённому есть исходное).

·

·

·

·

Обобщение: , где — произвольный многочлен с вещественными коэффициентами.

·

·

Значимость сопряжения объясняется тем, что оно является образующей группы Галуа .

 

1.10

Формула Муавра для комплексных чисел утверждает, что

для любого

Доказательство

Формула Муавра сразу следует из формулы Эйлера и тождества для экспонент , где b — целое число.[1]

Применение

Аналогичная формула применима также и при вычислении корней n-ой степени из ненулевого комплексного числа:

где k = 0, 1, …, n—1.

Из основной теоремы алгебры следует, что корни n-й степени из комплексного числа всегда существуют, и их количество равно n. На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного n-угольника, вписанного в окружность радиуса с центром в нуле.

1.11

1.12




Читайте также:



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (520)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7