Мегаобучалка Главная | О нас | Обратная связь  


Краткие сведения из алгоритма способа




Сущность параметрического способа отражается в принципах, положенных в основу составления уравнений поправок. Дальнейшая задача сводится к их решению при условии метода наименьших квадратов.

Для составления уравнений поправок выбирают независимые параметры . В качестве параметров выбирают величины, которые связаны функциональными зависимостями с результатами измерений. Для всех независимых параметров назначают их предварительные значения . К ним из уравнивания отыскивают поправки .

Обозначим численные значения измеренных величин за , j = 1,.. , n, где n – количество измеренных величин и будем называть их уравниваемыми величинами. Уравненные значения этих величин обозначим за . В качестве независимых параметров обычно принимают координаты пунктов.

Независимые параметры связаны функциональными зависимостями с уравниваемыми величинами

.

Это выражение называется уравнением связи, оно справедливо и по отношению к уравненным величинам и уравненным параметрам

, (19)

причем , где - измеренное значение, - поправка к измеренной величине, - поправки к предварительным значениям параметров.

Систему уравнений (19) приводят к линейному виду и получают систему линейных уравнений поправок:

,

или , (20)

где - свободный член уравнения поправок;

- коэффициенты уравнений поправок, вычисляемые по формулам:

. (21)

В матричной форме записи система параметрических уравнений имеет вид:

, (22)

где - вектор-столбец поправок в измеренные величины, количество строк которого (n) совпадает с количеством измеренных величин;

- матрица коэффициентов уравнений поправок, количество строк матрицы соответствует количеству измеренных величин(n), а столбцов – количеству параметров (k);

- вектор поправок к приближенным значениям параметров;

- вектор свободных членов уравнений поправок.

Для приведения системы уравнений к равноточному виду и переходу к системе нормальных уравнений умножим систему (22) слева на , где - транспонированная матрица коэффициентов уравнений поправок; P– диагональная матрица весовых коэффициентов измеренных величин. Веса измеренных величин определяются по формуле , где - ошибка единицы веса, назначаемая до уравнивания, - средняя квадратическая ошибка jизмерения. Система нормальных уравнений имеет вид:

, (23)

где - матрица коэффициентов нормальных уравнений;

.

Решение системы (23) находим в виде

, (24)

где - матрица, обратная к матрице нормальных уравнений.

Подставив решение системы нормальных уравнений в выражение (22), найдем вектор поправок в измеренные величины.

После этого необходимо произвести оценку точности. Вычисляют ошибку единицы веса после уравнивания по формуле :

, (25)

где n –число всех измерений,

k – число параметров;

VT – транспонированный вектор поправок в измеренные величины;

Р – матрица весов измеренных величин;

V - вектор поправок в измеренные величины.

Точность определения параметров из уравнивания характеризуется величиной средней квадратической ошибки, значение которой определяется из соотношения , где Q–обратные веса параметров, являющиеся диагональными элементами матрицы .

 

 




Читайте также:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (381)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.004 сек.)