Фазовая и групповая скорость. Дисперсия скоростиКак было указано в п. 1.2, в упругой среде малые возмущения распространяются со скоростью звука, являющейся фазовой скоростью. Для случая монохроматических плоских волн можно показать, что фазовая скорость гармонической волны есть
Так как возмущение (в нашем случае – гармоническое колебание) подчиняется волновому уравнению, то и в соотношении (1.18) частота и волновое число не могут быть произвольными. В случае линейных сред для малых возмущений в рамках волнового уравнения (1.2) Рассмотрим далее некоторые вопросы, связанные с дисперсией. Напомним, что дисперсией называется функциональная зависимость
Если фазовая скорость постоянна или закон дисперсии (1.19) носит линейный характер, то такая среда называется бездисперсионной. Бездисперсионные среды обладают очень важным свойством: возмущение (1.4) распространяется в данной среде без изменения формы. Сказанное относится в полной мере и к гармоническим колебаниям (1.5). Так, если в некоторый момент времени возмущение имеет вид группы гармонических волн, то и в любой другой момент времени это возмущение будет иметь тот же вид, т. к. отдельные волны не изменят своего положения друг относительно друга. В случае дисперсионной среды ситуация меняется. Любое возмущение (не обязательно периодическое) может быть представлено в форме ряда Фурье или Фурье-образа, т. е. в среде будет распространяться группа гармонических волн с различными волновыми числами. Теперь уже различные гармоники будут распространяться с различной фазовой скоростью, что приведет к изменению формы начального возмущения. Кроме того, для сред с дисперсией понятие скорости волны становится более сложным и требует дополнительных определений. Производная от правой части дисперсионного соотношения (1.18)
имеет размерность скорости и называется групповой скоростью. Реальные дисперсионные соотношения можно получить, подставляя функцию (1.4) в волновое уравнение. Таким образом может быть получено дисперсионное соотношение для гармонической волны в линейном приближении:
Нетрудно показать, что в общем случае одномерных процессов групповая скорость связана с фазовой скоростью следующим соотношением:
Выберем некоторое значение
где
где Если теперь
Решение волнового уравнения, соответствующее волновому числу
Решение
Графически это решение при
Каждый участок огибающей (1.28) длиной Из сказанного следует, что в линейных средах групповая 1) для сред без дисперсии 2) для сред с аномальной дисперсией 3) для сред с нормальной дисперсией 1.7. Энергетические характеристики упругих волн. Акустические колебания являются упругими, поэтому все, что будет сказано об упругих колебаниях, справедливо и для акустических. Выделим малый объем среды и определим, как меняется со временем энергия, находящаяся в этом объеме среды. Акустическая энергияскладывается из кинетической энергии движения частиц среды и потенциальной энергии деформации. Кинетическая энергия единицы объема есть
Потенциальная энергия единицы объема, связанная с упругой деформацией среды равна
Принимая во внимание, что упругие колебания в плоском случае описываются уравнением (1.2), имеющим общее решение вида (1.3), при непосредственном дифференцировании выражения (1.3) получим
откуда, с учетом (1.29) и (1.30), следует, что Это свидетельствует о том, что в малом объеме упругой среды кинетическая энергия равна потенциальной. Изменение их значений в волновом процессе происходит синфазно, т.е. в одинаковой фазе. Именно в этом заключается принципиальное отличие волнового процесса от простого колебательного движения, где кинетическая и потенциальная энергия изменяются в противофазе. Распространение колебаний в упругой среде может представлено как распространение следующих типов волн: - волны упругих деформаций (перенос потенциальной энергии); - волны колебательных скоростей (перенос кинетической энергии). Энергия единицы объема – это объемная плотность энергии, она равна
Для гармонических волн
Таким образом, механическая энергия единицы объема пропорциональна плотности среды, квадрату амплитуды смещений и квадрату частоты колебаний. Объемная плотность энергии – величина переменная. Она различна в каждый момент времени и в каждой точке. Средняя за период плотность энергии гармонической волны в каждой точке волнового поля:
Объемная плотность энергии – локальная энергетическая характеристика. Перейдем к интегральным характеристикам. Энергия некоторого объема
Поток или изменение энергии
Это скалярная величина, которая не отражает направления переноса энергии. Для характеристики направления потока энергии в данной точке акустического поля вводят векторную величину – плотность потока энергии:
Величину
Интенсивность акустических волн – отношение потока акустической энергии сквозь поверхность, перпендикулярную направлению распространения, к площади этой поверхности. Таким образом, интенсивность (сила звука) равна модулю вектора Умова-Пойнтинга:
Основываясь на формулах (1.34), (1.38) и (1.39), можно сказать, что интенсивность звука – это средняя плотность энергии, переносимой через единичную площадку в направлении распространения волны. В этом случае интенсивность одномерной гармонической волны равна
Из выражения (1.40) следует, что интенсивность упругой волны пропорциональна квадратам амплитуды и частоты колебаний и произведению плотности среды на скорость распространения волны, т.е. акустическому импедансу среды. Учитывая, что звуковое давление
Таким образом, интенсивность упругой волны определяется отношением квадрата амплитуды акустического давления к удвоенному акустическому сопротивлению среды. Полученная формула одинаково справедлива для плоских и сферических бегущих волн. Если не учитывать поглощение энергии ультразвука средой, то в случае плоских волн интенсивность не меняется с расстоянием. Однако для сферических волн интенсивность убывает обратно пропорционально квадрату расстояния (см. раздел 1.3). Для стоячих волн интенсивность утрачивает смысл: I = 0, т.к. потока энергии в этом случае нет. Энергетической характеристикой таких волн является просто плотность акустической энергии. Читайте также: Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (851)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |