Мегаобучалка Главная | О нас | Обратная связь  


Корректировка и эффект привязки




Во многих ситуациях оценки люди начинают с исходной величины, которая затем корректируется в сторону окончательного ответа. Исходную величину, или точку отсчета, задает формулировка задачи, или она становится результатом частичных вычислений. В любом случае корректировка обычно является недостаточной [18]. То есть различные стартовые точки приводят к различным оценкам, которые отклоняются в сторону исходных величин. Мы назвали этот феномен эффектом привязки.

Недостаточная корректировка. Для демонстрации эффекта привязки участникам предлагалось оценить различные величины в процентах (например, долю африканских стран в ООН). Для каждой величины определялось случайное стартовое число (в присутствии участника вращали «колесо фортуны ») от 0 до 100. Испытуемого сначала спрашивали, выше или ниже полученного числа оценивается искомая величина, а затем предлагали двигаться вверх или вниз от названного числа до нужной величины. Разные группы получали разные стартовые числа для каждой величины, и эти случайные числа оказывали значимое влияние на ответ. Например, средние оценки процента африканских стран в ООН составили 25 и 45 – в группах, получивших в качестве точек отсчета числа 10 и 65 соответственно. Денежные вознаграждения за точность не снизили эффект привязки.
Эффект привязки возникает не только когда участнику предлагают точку отсчета, но и тогда, когда оценка основывается на результате неполных вычислений. Изучение интуитивных численных оценок иллюстрирует этот эффект. Две группы старшеклассников в течение 5 секунд оценивали числовое выражение, написанное на доске. Одна группа оценивала произведение

8 × 7 × 6 × 5 × 4 × 3 × 2 × 1.

Другая группа оценивала произведение

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8.

Чтобы быстро ответить на вопрос, человек может сделать несколько первых шагов умножений и оценить итог с помощью экстраполяции или корреляции. Поскольку корреляция обычно оказывается недостаточной, предполагалось, что такая процедура приведет к заниженной оценке. Далее, поскольку результат первых двух умножений (выполняемых слева направо) больше в нисходящей последовательности, чем в восходящей, первое выражение будет казаться больше, чем второе. Оба предположения подтвердились. Средняя оценка восходящего выражения составила 512, а средняя оценка нисходящего – 2250. Правильный ответ – 40320.

Ошибки при оценке конъюнктивных и дизъюнктивных событий. В недавнем исследовании Бар-Хиллела [19] участникам предлагали сделать ставку на одно из двух событий. События были трех типов: (а) простые события – например, вытаскивание красного шарика из мешка, в котором содержится 50 % красных и 50 % белых шариков; (б) конъюнктивные события – например, выт аскивание красного шарика семь раз подряд (шарик каждый раз возвращается обратно) из мешка, содержащего 90 % красных и 10 % белых шариков; (в) дизъюнктивные события – например, вытаскивание красного шарика хотя бы один раз за семь попыток (шарик каждый раз возвращается) из мешка, содержащего 10 % красных и 90 % белых шариков. В этой задаче значительное большинство участников предпочли поставить на конъюнктивное событие (вероятность которого 0,48), а не на простое (вероятность – 0,50). Участники также охотнее ставили на простое событие, чем на дизъюнктивное (вероятность которого составляла 0,52). Таким образом, большинство ставили на менее вероятное событие в обеих сессиях. Такой характер выбора иллюстрирует общую тенденцию. Исследования выбора ставки и оценки вероятности показывают, что люди склонны переоценивать вероятность конъюнктивных событий [20] и недооценивать вероятность дизъюнктивных событий. Эти ошибки легко объясняются эффектом привязки. Вероятность элементарного события (ус пех в любой стадии) становится естественной точкой отсчета при оценке вероятности и конъюнктивных и дизъюнктивных событий. Поскольку корректировка от точки отсчета обычно является недостаточной, итоговые оценки остаются слишком близко к вероятности элементарного события в обоих случаях. Обратите внимание, что полная вероятность конъюнктивного события ниже вероятности каждого элементарного события, а полная вероятность дизъюнктивного события выше вероятности каждого элементарного события. Из-за эффекта привязки полная вероятность будет переоценена для конъюнктивных событий и недооценена – для дизъюнктивных.
Ошибки оценки сложных событий особенно важны в контексте планирования. Успешное выполнение задуманного – скажем, разработки нового продукта – обычно носит конъюнктивный характер: для успешного завершения проекта должны произойти все события в цепочке. Даже если каждое отдельное событие весьма вероятно, вероятность общего успеха может оказаться довольно низкой, е сли отдельных событий много. Общая тенденция к переоценке вероятности конъюнктивных событий ведет к неоправданному оптимизму при оценке вероятности того, что план принесет успех или проект будет закончен в срок. И наоборот, дизъюнктивные структуры часто оцениваются как рискованные. Работа сложных систем, вроде ядерного реактора или человеческого тела, нарушается при отказе любого из важнейших компонентов. Даже если вероятность отказа каждого компонента мала, вероятность отказа системы может оказаться высокой, если в работу вовлечено множество компонентов. Из-за эффекта привязки люди недооценивают вероятность отказа в сложных системах. Таким образом, направление ошибки, вызванной эффектом привязки, иногда можно определить по структуре события. Цепочечная структура конъюнктивных событий ведет к переоценке, воронкообразная структура дизъюнктивного события ведет к недооценке.

Эффект привязки при оценке распределения субъективных вероятностей. При принятии решений экспертам часто требуется высказать мнение о некоторой величине, например об индексе Доу-Джонса в определенный день, в форме распределения вероятностей. Обычно для построения такого распределения человека просят выбрать значения величины, которые соответствуют конкретным процентилям его распределения вероятностей. Например, эксперта просят выбрать число, X, таким образом, чтобы субъективная вероятность того, что это число будет больше значения индекса Доу-Джонса, составляла 0,90. То есть эксперт должен выбрать значение X так, чтобы принять ставки 9:1 на то, что индекс Доу-Джонса не превзойдет его. Распределение субъективных вероятностей для значения индекса Доу-Джонса можно построить на основе нескольких таких суждений для разных процентилей.
Собрав распределения су бъективных вероятностей для многих разных величин, можно проверить правильность оценок эксперта. Эксперт считается должным образом калиброванным в определенном наборе задач, если ровно П% верных значений оцененных величин оказываются ниже его заявленных значений XП. Например, истинные значения должны быть ниже X для 1 % значений и выше X для 1 % значений. Следовательно, истинные значения должны попасть в доверительный интервал между X и X в 98 % случаев.
Некоторые исследователи [21] проанализировали нарушения в оценке вероятности для многих количественных величин для большого числа экспертов. Эти распределения показывают значительные и систематические отклонения от надлежащих оценок. В большинстве исследований реальные значения оцениваемых величин или меньше, чем X , или больше, чем X , примерно для 30 % задач. То есть эксперты выбирают слишком узкие строгие интервалы, говорящие об уверенности большей, чем позволяют их знания об оцениваемой величине. Эта ошибка присуща и неискушенным испытуемым, и умудренным экспертам; ее нельзя снять введением четких правил оценки, которые обеспечивают стимулы для внешней калибровки. Этот эффект связан, по крайней мере частично, с эффектом привязки.
Например, чтобы выбрать X для индекса Доу-Джонса , естественно начать с лучшей оценки и корректировать ее, двигаясь вверх. Если этой корректировки – как обычно и бывает – окажется недостаточно, то X окажется недостаточно экстремальным. Такой же эффект привязки возникнет при выборе числа X , которое будет получено корректировкой от лучшей оценки вниз. Следовательно, доверительный интервал между X и X получится слишком узким и граничное распределение вероятностей окажется слишком жестким. В поддержку этого объяснения можно показать, что субъективные вероятности систематически меняются с помощью процедуры, в которой наилучшая оценка не служи т привязкой.
Распределения субъективных вероятностей для данной величины (индекс Доу-Джонса) можно получить двумя способами: (а) предложить эксперту выбрать значения индекса Доу-Джонса, соответствующие определенному процентилю его распределения вероятностей, или (б) предложить оценить вероятность того, что истинное значение индекса Доу-Джонса превзойдет некоторые указанные числа. Две процедуры формально эквивалентны и должны дать одинаковые распределения. Однако они подразумевают разные режимы корректировки от разных привязок. В процедуре (а) естественной точкой отсчета становится лучшая оценка величины. В процедуре (б), с другой стороны, эксперт может «привязаться» к величине, указанной в вопросе. Или же привязкой могут стать равные шансы – 50:50, что является естественной точкой отсчета при оценке вероятности. В любом случае процедура (б) даст менее экстремальные оценки, чем процедура (а).
Чтобы выявить различия между этими процедурами, исп ытуемым предложили набор из 24 количественных измерений (например, расстояние по воздуху от Нью-Дели до Пекина). Участники эксперимента оценивали X и X для каждой величины. Другая группа испытуемых получила средние результаты первой группы по каждой из 24 величин. Их попросили оценить шансы на то, что каждое из представленных чисел превосходит истинное значение соответствующей величины. При отсутствии отклоняющих факторов вторая группа должна была принять шансы, указанные первой группой, то есть 9:1. Однако если привязкой послужат равные шансы или указанные величины, вторая группа должна указать шансы менее экстремальные, то есть ближе к 1:1. В самом деле, в среднем вторая группа указала по всем вопросам шансы 3:1. Когда результаты двух групп были проверены на внешнюю калибровку, оказало сь, что участники в первой группе были излишне экстремальны, в соответствии с предыдущими исследованиями. События, для которых была указана вероятность 0,10, в действительности происходили в 24 % случаев. Наоборот, участники во второй группе оказались излишне консервативны. События, для которых они называли вероятность 0,34, в реальности происходили в 26 % случаев. Результаты иллюстрируют, каким образом степень правильности оценки зависит от процедуры оценки.

 

Обсуждение

В данной статье рассматривались когнитивные искажения, вызванные излишним доверием к эвристическим методам и процедурам. Эти искажения не связаны с эффектами мотивации, такими как принятие желаемого за действительное или искажения, внесенные поощрениями и наказаниями. Некоторые из описанных ранее грубых ошибок в суждениях появляются, несмотря на призывы к точности и вознаграждение за правильный ответ [22].
Излишнее доверие к эвристическим методам и частые ошибки – удел не только дилетантов. Опытные исследователи подвержены тем же ошибкам, когда мыслят интуитивно. Например, тенденция прогнозировать результат, который наиболее соответствует входным данным, в сочетании с невниманием к априорной вероятности, наблюдается в интуитивных суждениях у людей, которые специально изучали статистику [23]. Хотя изучавшие статистику избегают элементарных ошибок, вроде «ошибки игрока», их интуитивные суждения подвержены сходным ошибкам в более запутанных и менее прозрачных ситуациях.
Неудивительно, что полезные эвристические методы, такие как репрезентативность и доступность, используются, хотя и приводят иногда к ошибкам в прогнозах и оценках. Удивительно, пожалуй, то, что люди не усваивают таких фундаментальных статистических правил, как регрессия к среднему или влияние размера выборки на изменчивость выборки. Хотя в жизни каждый постоянно сталкивается с примерами, из которых можно вывести эти правила, очень немн огие самостоятельно открывают принципы выборки и регрессии. Статистические принципы не усваиваются из повседневного опыта, потому что соответствующие примеры не кодируются должным образом. Например, люди не осознают, что соседние строки в тексте больше отличаются по средней длине слов, чем соседние страницы, просто потому, что не обращают внимания на среднюю длину слов в строке или на странице. То есть связь между размером выборки и изменчивостью выборки не усваивается, хотя примеров вокруг – в изобилии.
Недостаток правильных инструкций объясняет и то, почему люди обычно не замечают искажений в своих суждениях о вероятности. Возможно, человек узнал бы, прошли ли его суждения внешнюю калибровку, ведя строгий учет: какая доля событий произошла из тех, для которых он предсказал ту же вероятность. Однако для людей неестественно группировать события по их прогнозируемой вероятности. Без такого группирования человек не в состоянии узнать, например, что всего лишь 50 % с обытий, которым он приписал вероятность 0,9 и выше, произошли в действительности.
Эмпирический анализ когнитивных искажений много дает для оценки прогноза вероятности в теории и на практике. Современная теория принятия решений [24] рассматривает субъективную вероятность как выраженное в цифрах мнение идеального человека. Конкретно субъективная вероятность данного события определяется набором ставок по поводу этого события, на которые согласен человек. Внутренне согласованную, или когерентную, оценку субъективной вероятности можно вывести, если выбор ставок человека удовлетворяет определенным принципам – аксиомам теории. Полученная вероятность будет субъективной в том смысле, что у разных людей может быть разная вероятность для одного и того же события. Главный плюс такого подхода – строгая субъективная интерпретация вероятности, применимая к уникальным событиям и включенная в общую теорию рационального принятия решений.
Наверное, следует заме тить, что, хотя субъективную вероятность иногда можно вывести из предпочтений по ставкам, обычно вероятности так не формируются. Человек ставит на команду «А», а не на команду «Б», потому что верит, что у команды «А» больше шансов на победу; он не выводит свою веру из предпочтений по ставкам. В реальности субъективные вероятности определяют предпочтения по ставкам, а не выводятся из них, как в аксиоматической теории принятия рациональных решений [25].
Субъективная, по сути, природа вероятности привела многих исследователей к убеждению, что когерентность, или внутренняя согласованность, – единственный валидный критерий оценки заявленных вероятностей. С точки зрения формальной теории субъективной вероятности любой набор внутренне согласованных суждений о вероятности ничем не хуже других. Такой критерий не вполне удовлетворителен, поскольку внутренне согласованный набор субъективных вероятностей может быть несовместим с другими мнениями, которых придерживается челове к. Представьте человека, чьи субъективные вероятности для всех возможных исходов подбрасывания монеты отражают ошибку игрока. То есть его оценка вероятности решки для конкретного броска растет с ростом числа орлов, выпавших в предшествующих бросках. Суждения такого человека могут быть внутренне согласованны, а значит, должны быть признаны адекватными субъективными вероятностями – по критерию формальной теории. Эти вероятности, однако, несовместимы с общим убеждением, что у монеты нет памяти и, следовательно, результат броска не может зависеть от предыдущих выпадений. Чтобы признать заявленные вероятности адекватными или рациональными, внутренней согласованности недостаточно. Суждения должны быть совместимы со всей системой убеждений, которых придерживается человек. К сожалению, не может быть простой формальной процедуры для оценки совместимости набора суждений о вероятности с общей системой убеждений эксперта. Рациональный эксперт, тем не менее, будет стремиться к совместимости, хотя в нутренней согласованности проще добиться и ее легче оценивать. В частности, эксперт постарается, чтобы его суждения о вероятности были согласованы с его знаниями о предмете, с законами вероятности и его собственными эвристическими методами и искажениями.

 

Summary

В статье описаны три эвристических метода, используемых при выработке суждений в условиях неопределенности: (а) репрезентативность, обычно применяемая при оценке вероятности того, что объект или событие «А» принадлежит классу или процессу «Б»; (б) доступность примеров или сценариев, которая часто применяется, если нужно оценить частоту класса или вероятность конкретного развития событий; (в) корректировка от привязки, обычно применяемая при численном прогнозе, когда доступны релевантные величины. Эти эвристические методы очень экономичны и часто эффективны, но ведут к систематическим и предсказуемым ошибкам. Более полное понимание этих эвристических методов и связанных с ними ошибок может повысить качество суждений и решений в ситуации неопределенности.

 

Примечания

[1] D. Kahneman and A. Tversky. On the Psychology of Prediction // Psychological Review 80 (1973): 237–51.
[2] Ibid.
[3] Ibid.
[4] D. Kahneman and A. Tversky. Subjective Probability: A Judgment of Representativeness // Cognitive Psychology 3 (1972): 430–54.
[5] Ibid.
[6] W. Edwards. Conservatism in Human Information Processing // Formal Representation of Human Judgment, ed. B. Kleinmuntz (New York: Wiley, 1968): 17–52.
[7] D. Kahneman and A. Tversky. Subjective Probability.
[8] A. Tversky and D. Kahneman. Belief in the Law of Small Numbers // Psychological Bulletin 76 (1971): 105–10.
[9] D. Kahneman and A. Tversky. On the Psychology of Prediction.
[10] Ibid.
[11] Ibid.
[12] Ibid.
[13] A. Tversky and D. Kahneman. Availability: A Heuristic for Judging Frequency and Probability // Cognitive Psychology 5 (1973): 207–32.
[14] Ibid.
[15] C. Galbraith and B. J. Underwood. Perceived Frequency of Concrete and Abstract Words // Memory & Cognition 1 (1973): 56–60.
[16] A. Tversky and D. Kahneman. Availability.
[17] L. J. Chapman and J. P. Chapman. Genesis of Popular but Erroneous Psychodiagnostic Observations // Journal of Abnormal Psychology 73 (1967): 193–204; L. J. Chapman and J. P. Chapman. Illusory Correlation as an Obstacle to the Use of Valid Psychodiagnostic Signs // Journal of Abnormal Psychology 74 (1969): 271–80.
[18] P. Slovic and S. Lichtenstein. Comparison of Bayesian and Regression Approaches to the Study of Information Processing in Judgme nt // Organizational Behavior & Human Performance 6 (1971): 649–744.
[19] M. Bar-Hillel. On the Subjective Probability of Compound Events // Organizational Behavior & Human Performance 9 (1973): 396–406.
[20] J. Cohen, E. I. Chesnick, and D. Haran. A Confirmation of the Inertial-Ψ Effect in Sequential Choice and Decision // British Journal of Psychology 63 (1972): 41–46.
[21] M. Alpert and H. Raiffa, unpublished manuscript; C. A. Stael von Holstein. Two Techniques for Assessment of Subjective Probability Distributions: An Experimental Study // Acta Psychologica 35 (1971): 478–94; R. L. Winkler. The Assessment of Prior Distributions in Bayesian Analysis // Journal of the American Statistical Association 62 (1967): 776–800.
[22] Kahneman and Tversky. Subjective Probability; Tversky and Kahneman. Availability.
[23. Kahneman and Tversky. On the Psychology of Prediction; Tversk y and Kahneman. Belief in the Law of Small Numbers.
[24] L. J. Savage. The Foundations of Statistics (New York: Wiley, 1954).
[25] Ibid.; B. de Finetti. Probability: Interpretations // International Encyclopedia of the Social Sciences, ed. D. E. Sills, vol. 12 (New York: Macmillan, 1968): 496–505.


Приложение В
Выбор, ценности и фреймы [5 -  Статья изначально представляла собой выступление на церемонии вручения наград за выдающиеся научные достижения на конференции Американской психологической ассоциации в августе 1983 г. Впервые опубликована в журнале American Psychologist (1984. Vol. 34). На русском языке впервые опубликована под названием «Рациональный выбор, ценности и фреймы» в «Психологическом журнале» (2003. Т. 24. № 4) (прим. перев.).]
Даниэль Канеман и Амос Тверски


АННОТАЦИЯ: Мы обсуждаем когнитивные и психофизические де терминанты выбора в ситуациях с риском или без риска. Психофизика ценности приводит к неприятию риска в области прибыли и вызывает стремление к риску в области потерь. Психофизика шанса вызывает чрезмерную переоценку гарантированных исходов и невероятных событий по сравнению с событиями средней вероятности. Задачи, связанные с выбором, можно сформулировать или представить разными способами, которые рождают разные предпочтения, что противоречит неизменяемым критериям рационального выбора. Процесс мысленного подсчета, в ходе которого люди упорядочивают результаты трансакций, объясняет некоторые аномалии в поведении потребителя. В частности, выбор варианта может зависеть от того, оценивается ли отрицательный результат как затраты или как невосполнимые потери. Обсуждается, как соотносятся выбираемая ценность и ощущаемая ценность.

Принимать решения – как говорить прозой: люди делают это непрерывно, осознанно или неосознанно. Поэтому неудивительно, что процессом при нятия решения занимаются многие дисциплины – от математики и статистики, экономики и политики до социологии и психологии. Изучение процесса решения включает нормативный и дескриптивный анализ. Нормативный анализ связан с природой рационального и логикой принятия решений. Дескриптивный анализ, со своей стороны, рассматривает убеждения и предпочтения людей – реальные, а не идеальные. Конфликт между нормативными и дескриптивными соображениями во многом характеризует процесс изучения суждений и выбора.
При анализе принятия решений обычно различают выбор в условиях риска и без риска. Классический пример решения в условиях риска – принятие пари, приносящего денежный выигрыш с определенной вероятностью. Типичное решение без риска касается сделки, в которой товар или услуга обменивается на деньги или труд. В первой части статьи мы предлагаем анализ когнитивных и психофизических факторов, влияющих на ценность перспектив в условиях риска. Во второй части мы распространим эт от анализ на сделки и обмены.

 




Читайте также:



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (474)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)