Мегаобучалка Главная | О нас | Обратная связь


Ядро клетки, его строение и функции



2015-12-13 3394 Обсуждений (0)
Ядро клетки, его строение и функции 0.00 из 5.00 0 оценок




Клеточное ядро имеет важнейшее значение в жизнедеятельности клетки, поскольку служит хранилищем наследственной информации, содержащейся в хромосомах. Ядро есть в любой эукариотической клетке.

Ядро ограничено ядерной оболочкой, отделяющей его содержимое (кариоплазму) от цитоплазмы. Оболочка состоит из двух мембран, разделенных промежутком. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой. В ядре клетки у большинства эукариот находится от 1 до 7 ядрышек. С ними связаны процессы синтеза ДНК.

Основные компоненты ядра - хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра.

Во время деления клеток хромосомные нити образуют плотные спирали, вследствие чего становятся видимыми (с помощью обычного микроскопа) в форме палочек, «шпилек». Весь объем генетической информации распределен между хромосомами ядра. В процессе их изучения были выявлены следующие закономерности:

· в ядрах соматических клеток (т. е. клеток тела, неполовых) у всех особей одного вида содержится одинаковое количество хромосом, составляющих набор хромосом (рис. 3);

· для каждого вида характерен свой хромосомный набор по их количеству (например, у человека 46 хромосом, у мушки дрозофилы — 8, у аскариды — 4, у речного рака — 196, у лошади — 66, у кукурузы — 104);

· хромосомы в ядрах соматических клеток могут быть сгруппированы парами, получившими название гомологичных хромосом на основании их сходства (по строению и функциям);

· в ядрах половых клеток (гамет) из каждой пары гомологичных хромосом содержится только одна, т. е. общий набор хромосом вдвое меньше, чем в соматических клетках;

· одинарный набор хромосом в половых клетках называется гаплоидным и обозначается буквой n, а в соматических - диплоидным (2n).

Из изложенного ясно, что каждая пара гомологичных хромосом образована объединением отцовских и материнских хромосом при оплодотворении, т. е. слиянии половых клеток (гамет). И наоборот, при образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна. Хромосомы разных гомологичных пар отличаются по размерам и форме.

В теле хромосом выделяют первичную перетяжку (называемую центромерой), к которой прикрепляются нити веретена деления. Она делит хромосому на два плеча. Хромосомы могут быть равноплечими, разноплечими и одноплечими.

4 Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) – округлые, овальные или палочковидные двухмембранные органоиды диаметром около 0,2-1 мкм и длиной до 7-10 мкм. Эти органоиды можно обнаружить с помощью световой микроскопии, поскольку они обладают достаточной величиной и высокой плотностью. Особенности внутреннего строения их можно изучить только с помощью электронного микроскопа

строение митохондрий. Митохондрии ограничены двумя мембранами, каждая из которых имеет толщину около 7 нм. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внешняя мембрана гладкая, а внутренняя образует складки – кристы (лат. “криста” – гребень, вырост), увеличивающие ее поверхность. Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Особенно много крист в митохондриях активно функционирующих клеток, например мышечных. В кристах располагаются цепи переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Митохондриальные кристы обычно полностью не перегораживают полость митохондрии. Поэтому матрикс на всем протяжении является непрерывным. В матриксе содержатся кольцевые молекулы ДНК, митохондриальные рибосомы, встречаются отложения солей кальция и магния. На митохондриальной ДНК происходит синтез молекул РНК различных типов, рибосомы участвуют в синтезе ряда митохондриальных белков. Малые размеры ДНК митохондрий не позволяют кодировать синтез всех митохондриальных белков. Поэтому синтез большинства белков митохондрий находится под ядерным контролем и осуществляется в цитоплазме клетки. Без этих белков рост и функционирование митохондрий невозможно. Митохондриальная ДНК кодирует структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.

Функции митохондрий. Основная функция митохондрий заключается в синтезе АТФ. Этот процесс происходит в результате окисления органических субстратов и фосфорилирования АДФ. Первый этап этого процесса происходит в цитоплазме в анаэробных условиях. Поскольку основным субстратом является глюкоза, то процесс носит название гликолиза. На данном этапе субстрат подвергается ферментативному расщеплению до пировиноградной кислоты с одновременным синтезом небольшого количества АТФ. Второй этап происходит в митохондриях и требует присутствия кислорода. На этом этапе происходит дальнейшее окисление пировиноградной кислоты с выделением СО2 и переносом электронов на акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии. Освободившиеся в процессе окисления в цикле Кребса электроны переносятся в дыхательную цепь (цепь переноса электронов). В дыхательной цепи они соединяются с молекулярным кислородом, образуя молекулы воды. В результате этого небольшими порциями выделяется энергия, которая запасается в виде АТФ. Полное окисление одной молекулы глюкозы с образованием диоксида углерода и воды обеспечивает энергией перезарядку 38 молекул АТФ (2 молекулы в цитоплазме и 36 в митохондриях).

Пластиды (от. греч. plastides – создающие, образующие)– это двухмембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид:хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом.

строение хлоропластов. От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды, имеющие вид дисков. Тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Между собой граны соединены другими тилакоидами (ламелы, фреты). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл

Функции хлоропластов. Основная функция хлоропластов – фотосинтез. Кроме фотосинтеза хлоропласты осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков. В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

Хромопласты(от греч. chromatos – цвет, краска и «plastos» – вылепленный) – это окрашенные пластиды. Цвет их обусловлен наличием следующих пигментов: каротина (оранжево-желтый), ликопина (красный) и ксантофилла (желтый). Хромопластов особенно много в клетках лепестков цветков и оболочек плодов. Больше всего хромопластов в плодах и увядающих цветках и листьях. Хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и накапливают каротиноиды. Это происходит при созревании многих фруктов: налившись спелым соком, они желтеют, розовеют или краснеют. Основная функция хромопластов заключается в обеспечении окраски цветов, плодов, семян.

Лейкопласты(от греч. leucos – белый, plastos – вылепленный, созданный). Это бесцветные пластидыокруглой, яйцевидной, веретенообразной формы. Находятся в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Особенно богаты лейкопластами клубни картофеля. Внутренняя оболочка образует немногочисленные тилакоиды. На свету из хлоропластов образуются хлоропласты. Лейкопласты, в которых синтезируется и накапливается вторичный крахмал называют амилопластами, масла –эйлалопластами, белки – протеопластами. Основная функция лейкопластов – это аккумуляция питательных веществ.

5 Вакуоль — это структурный отдел живой клетки, который отвечает за поглощение некоторых веществ для дальнейшей их переработки и утилизации. Строение вакуоли отличается наличием внутренней полости, отграниченной от пространства остальной клетки проницаемой мембраной. Функция вакуоли в жизнедеятельности любой клеточной структуры многообразна. В этом образовании происходят процесс трансформации биологически активных веществ. После этого они становятся доступны для клетки в виде питательных и энергетических субстанций.

Клеточный сок играет чрезвычайно важную роль в жизни растительных организмов.К. соком называют водянистую жидкость, включенную в виде более или менее крупных капель внутрь протоплазмы клеточек. В самых молодых растительных клеточках, напр. в клеточках точки роста корня илистебля, К. сока нет. Затем он появляется в виде отдельных капелек, "вакуолей клеточного сока", которыепостепенно растут, сливаются друг с другом и дают в конце концов сплошную "соковую полость", одетуюлишь тонким слоем протоплазмы, образующей род мешка или пузыря.

6 Запасные Вещества в клетке живого содержимого растительной клетки - протопласта и продукты его жизнедеятельности очень разнообразны. Условно их объединяют в две группы:

1) конституционные, входящие в состав живой материи, и участвующие в обмене веществ (белки, нуклеиновые кислоты, липиды, углеводы и др.);

2) эргастические включения(греч. эргон- работа) - представляющие собой компоненты протопласта, играющие вспомогательную роль в его жизни и являющиеся либо источниками материи и энергии при росте и работе живой клетки, либо отбросными продуктами ее метаболизма. Одни из них - запасные вещества, т.е. временно исключенные из процесса обмена веществ (белки, липиды, углеводы: крахмал, инулин сахар и др.).

Крахмал(после целлюлозы) является самым распространенным в растительном мире углеводом

Белки- это основные органические вещества, определяющие строение и свойства живой материи. В определенные фазы развития белки могут откладываться в запас.

Липидывключают большую группу соединений биологического происхождения. Липиды являются структурными компонентами клетки

7. Клеточная стенка — жёсткая оболочка клетки, расположенная снаружи отцитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.

Строение и химический состав Клеточная стенка растительных клеток состоит, главным образом, из полисахаридов. Все компоненты, входящие в состав клеточной стенки, можно разделить на 4 группы:Структурныекомпоненты, представленные целлюлозой у большинства автотрофных растений.Компоненты матрикса, т. е. основного вещества, наполнителя оболочки – гемицеллюлозы, белки, липиды. Компоненты, инкрустирующие клеточную стенку, (т.е. откладывающиеся и выстилающие ее изнутри) – лигнин и суберин.Компоненты, адкрустирующие стенку, т.е. откладывающиеся на ее поверхности, — кутин, воск.Основной структурный компонент оболочки целлюлоза представлена неразветвленными полимерными молекулами, состоящими из 1000-11000 остатков — D глюкозы, соединенных между собой гликозидными связями. Наличие гликозидных связей создает возможность образования поперечных стивок. Благодаря этому, длинные и тонкие молекулы целлюлозы объединяются в элементарные фибриллы или мицеллы. Микрофибриллы оболочки погружены в аморфный пластичный гель – матрикс. Матрикс является наполнителем оболочки. В состав матрикса оболочек растений входят гетерогенные группы полисахаридов, называемые гемицеллюлозами и пектиновыми веществами.Гемицеллюлозыпредставляют собой ветвящиеся полимерные цепи, состоящие из различных остатков гексоз (D-глюкоза, D-галактоза, манноза),пентоз (L-ксилоза, L-арабиноза) и уриновых кислот (глюкуроновая и галактуроновая). Эти компоненты гемицеллюлоз сочетаются между собой в разных количественных отношениях и образуют разнообразные комбинации.Гемицеллюлозы в теле растений играют: Механическую роль, участвуя наряду с целлюлозой и другими веществами в построении клеточных стенок. Роль запасных веществ, отлагающихся, а затем расходующихся. При этом функцию запасного материала несут преимущественно гексозы; а гемицеллюлозы с механической функцией обычно состоят из пентоз. В качестве запасных питательных веществ гемицеллюлозы отлагаются также в семенах многих растений. Пектиновые вещества имеют довольно сложный химический состав и строение. Это гетерогенная группа, в которую входят разветвленные полимеры, несущие отрицательные заряды из-за множества остатков галактуроновой кислоты. Характерная особенность: пектиновые вещества сильно набухают в воде, а некоторые в ней растворяются. Легко они разрушаются и под действием щелочей и кислот.

Видоизменения клеточной стенки:

  1. Одревеснение клеточной оболочки происходит в результате отложения лигнина (неуглеводный компонент в фибриллах), клетки теряет эластичность, но могут пропускать воду. Эти клетки чаще мертвые, нежели живые. Стенки некоторых клеток могут включать: воск, кутину, суберин. Функции: придает клетке форму; отделяет одну клетку от другой, является скелетом для каждой клетки и придает прочность всему растению, выполняет защитную функцию.
  2. Опробкоеение вызывается особым жироподобным веществом - суберином. Такие оболочки становятся непроницаемыми для воды и газов, также, они не пропускают тепло, содержимое клеток с опробковевшими оболочками отмирает.
  3. Кутинизация заключается в выделении жироподобного вещества кутина. Обычно кутинизируются наружные стенки кожицы листьев и "травянистых стеблей. Это делает их менее проницаемыми для воды, уменьшает испарение воды у растений, охраняет от перегрева и ультрафиолета. Кутин образует на поверхности органа пленку, называемую кутикулой.
  4. Минерализация клеточных оболочек - это отложение: кремнезема и солей кальция. Наиболее сильно инкрустируются оболочки клеток кожицы листьев и стеблей злаков, осок, хвощей. Листьями злаков и осок можно поранить руки.
  5. Ослизнение оболочек - превращение целлюлозы и пектиновых веществ в слизи и камеди. Ослизнение хорошо наблюдается на семенах льна, находившихся в воде. Образование слизей способствует лучшему поглощению воды семенами и прикреплению их к почве.

. форма и величина растительной клетки. Диаметр клеток колеблется от нескольких микрон, или микрометров, до нескольких сантиметров. Размеры клеток покрытосеменных растений колеблются от 100 до 1000 мкм, а паренхимные клетки плодов и клубней растений могут достигать 1 мм и более. Наибольшие размеры имеют клетки лубяных волокон: у льна и конопли длина волокна 20—40 мм, у хлопчатника — до 65 мм. В основной же массе клетки мелкие" с диаметром от 20 до 50 мкм, видеть их можно только под микроскопом.

Отличия растительных клеток от животных.1.Главным отличием растительной клетки от животной является способ питания. Растительные клетки - автотрофы, они способны сами синтезировать органические вещества, необходимые для их жизнедеятельности, для этого им нужен только свет. Животные же клетки - гетеротрофы; необходимые им для жизни вещества они получают с пищей.
Правда, среди животных наблюдаются и исключения. Например, зеленые жгутиконосцы: днем они способны к фотосинтезу, но в темноте питаются готовыми органическими веществами.

2 Растительная клетка, в отличие от животной, имеет клеточную стенку и не может, вследствие этого, менять свою форму. Животная клетка может растягиваться и видоизменяться, т.к. клеточной стенки нет.

3Различия наблюдаются и в способе деления: при делении растительной клетки в ней образуется перегородка; животная клетка делится с образованием перетяжки.Клетки растений содержат в себе пластиды: хлоропласты, лейкопласты, хромопласты. Клетки животных не содержат таких пластид. Кстати, именно благодаря пластидам, несущим в себе хлорофилл, и происходит фотосинтез в растительных клетках.

5В клетках как растений, так и животных есть вакуоли. Но у растений это малочисленные крупные полости, а у животных многочисленные и мелкие. Вакуоли растений запасают питательные вещества, тогда как вакуоли животных несут пищеварительную и сократительную функции.

6Синтез аденозинтрифосфорной кислоты, необходимой для получения энергии, у растений происходит в митохондриях и пластидах, у животных же лишь в пластидах.

7 Все виды клеток имеют особый вид запасного углевода. У растительных клеток это крахмал, у животных - гликоген. Крахмал и гликоген отличаются по химическому составу и строению.

8 У животной клетки есть центриоли, у растительной клетки их нет.

9 Питательные вещества растительной клетки хранятся в клеточном соке, заполняющем вакуоли; питательные вещества животной клетки располагаются в цитоплазме и имеют вид клеточных включений.



2015-12-13 3394 Обсуждений (0)
Ядро клетки, его строение и функции 0.00 из 5.00 0 оценок









Обсуждение в статье: Ядро клетки, его строение и функции

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3394)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)