Мегаобучалка Главная | О нас | Обратная связь


Математические первоисточники



2015-12-13 653 Обсуждений (0)
Математические первоисточники 0.00 из 5.00 0 оценок




Если мы задумаемся над тем, с какими объектами работали первые механические предшественники современного электронного компьютера, то должны признать, что числа представлялись либо в виде линейных перемещений цепных и реечных механизмов, либо в виде угловых перемещений зубчатых и рычажных механизмов. И в том и в другом случае это были перемещения, что не могло не сказываться на габаритах устройств и на скорости их работы. Только переход от регистрации пере­мещений к регистрации сигналов позволил значительно снизить габариты и повысить быстродействие. Однако на пути к этому достижению потребовалось ввести еще несколько важных принципов и понятий.

Двоичная система Лейбница. В механических устройствах зубчатые колеса могут иметь достаточно много фиксированных и, главное, различимых между собой поло­жений. Количество таких положений, по крайней мере, равно числу зубьев шес­терни. В электрических и электронных устройствах речь идет не о регистрации положений элементов конструкции, а о регистрации состояний элементов устрой­ства. Таких устойчивых и различимых состояний всего два: включен — выключен; открыт — закрыт; заряжен — разряжен и т. п. Поэтому традиционная десятичная система, использованная в механических калькуляторах, неудобна для электронных вычислительных устройств.

Возможность представления любых чисел (да и не только чисел) двоичными цифрами впервые была предложена Готфридом Вильгельмом Лейбницем в 1666 году. Он

Рис. 3. Готфрид Вильгельм Лейбниц
пришел к двоичной системе счисления, занимаясь исследованиями философской концепции единства и борьбы противоположностей.

Рис. 5. Готфрид Вильгельм Лейбниц
   
Попытка представить мироздание в виде непрерывного взаимодей­ствия двух начал («черного» и «белого», муж­ского и женского, добра и зла) и применить к его изучению методы «чистой» математики под­толкнули Лейбница к изучению свойств двоич­ного представления данных с помощью нулей и единиц. Надо сказать, что Лейбницу (рис. 5.) уже тогда приходила в голову мысль о возможности использования двоичной системы в вычис­лительном устройстве, но, поскольку для механических устройств в этом не было никакой необходимости, он не стал использовать в своем калькуляторе (1673 году) принципы двоичной системы.

Математическая логика Джорджа Буля. Говоря о творчестве Джорджа Буля (рис. 6.), исследо­ватели истории вычислительной техники непременно подчеркивают, что этот выдаю­щийся английский ученый первой половины XIX века был самоучкой. Возможно, именно благодаря отсутствию «классического» (в понимании того времени) обра­зования, Джордж Буль внес в логику, как в науку, революционные изменения.

Рис. 6. Джордж Буль
Занимаясь исследованием законов мышления, он применил в логике систему формаль­ных обозначений и правил, близкую к математической. Впоследствии эту систему назвали логической алгеброй или булевой алгеброй. Правила этой системы применимы к самым разнообразным объектам и их группам (множествам, по терминологии автора). Основное назначение системы, по замыс­лу Дж. Буля, состояло в том, чтобы кодировать логические высказывания и сводить структуры логических умозаключений к простым выражени­ям, близким по форме к математическим форму­лам. Результатом формального расчета логическо­го выражения является одно из двух логических значений: истина или ложь.

Значение логической алгебры долгое время игнорировалось, поскольку ее приемы и методы не содержали практической пользы для науки и техники того времени. Однако, когда появилась принципиальная возможность создания средств вычислительной техники на электронной базе, операции, введенные Булем, оказались весьма полезны. Они изначально ориентированы на работу только с двумя сущностями: истина и ложь. Нетрудно понять, как они пригодились для работы с двоичным кодом, который в современных компьютерах тоже представляется всего двумя сиг­налами: ноль и единица. Не вся система Джорджа Буля (как и не все предложенные им логические опера­ции) были использованы при создании электронных вычислительных машин, но четыре основные операции: И (пересечение), ИЛИ (объединение), НЕ (обращение) и ИСКЛЮЧАЮЩЕЕ ИЛИ (рис. 7.) — лежат в основе работы всех видов процессоров совре­менных компьютеров.

Рис. 7. Основные операции логической алгебры.

 

Вопросы для закрепления

1. Что такое информатика?

2. Что называется пользовательским интерфейсом?

3. Какова основная задача информатики?

4. Какие науки выступают в роли источников информатики?

5. Что такое информация?

6. Что понимают под эффективностью аппаратных средств?

7. Какие единицы представления данных Вы знаете?

8. Что такое компьютер?

9. Что называют в качестве древнего предшественника компьютера?

10. Что лежит в основе современного компьютера?

 

 



2015-12-13 653 Обсуждений (0)
Математические первоисточники 0.00 из 5.00 0 оценок









Обсуждение в статье: Математические первоисточники

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (653)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)