Линейные однородные дифференциальные уравнения с постоянными коэффициентамиРешение дифференциального уравнения вида Т.к.
При этом многочлен Для того, чтобы функция
Т.к. ekx ¹ 0, то
Как и любое алгебраическое уравнение степени n, характеристическое уравнение
В зависимости от коэффициентов k характеристическое уравнение может иметь либо n различных действительных корней, либо среди действительных корней могут быть кратные корни, могут быть комплексно – сопряженные корни, как различные, так и кратные. Не будем подробно рассматривать каждый случай, а сформулируем общее правило нахождения решения линейного однородного дифференциального уравнения с постоянными коэффициентами.
1) Составляем характеристическое уравнение и находим его корни. 2) Находим частные решения дифференциального уравнения, причем: a) каждому действительному корню соответствует решение ekx; б) каждому действительному корню кратности m ставится в соответствие m решений: в) каждой паре комплексно – сопряженных корней
г) каждой паре m – кратных комплексно – сопряженных корней 3) Составляем линейную комбинацию найденных решений.
Эта линейная комбинация и будет являться общим решением исходного линейного однородного дифференциального уравнения с постоянными коэффициентами.
Пример. Решить уравнение
Составим характеристическое уравнение:
Общее решение имеет вид:
Пример. Решить уравнение
Это линейное однородное дифференциальное уравнение с переменными коэффициентами второго порядка. Для нахождения общего решения необходимо отыскать какое - либо частное решение. Таким частным решением будет являться функция
Исходное дифференциальное уравнение можно преобразовать:
Общее решение имеет вид:
Окончательно:
Пример. Решить уравнение
Составим характеристическое уравнение:
Общее решение:
Пример. Решить уравнение
Характеристическое уравнение:
Общее решение:
Пример. Решить уравнение
Характеристическое уравнение:
Общее решение:
Пример. Решить уравнение
Характеристическое уравнение:
Общее решение: Пример. Решить уравнение
Характеристическое уравнение:
Общее решение:
Пример. Решить уравнение
Характеристическое уравнение:
Общее решение:
Пример. Решить уравнение
Это уравнение не является линейным, следовательно, приведенный выше метод решения к нему неприменим. Понизим порядок уравнения с помощью подстановки Тогда
Окончательно получаем:
Это выражение будет общим решением исходного дифференциального уравнения. Полученное выше решение у1 = С1 получается из общего решения при С = 0.
Пример. Решить уравнение
Производим замену переменной:
Общее решение: Лекция 18. Линейные неоднородные дифференциальные уравнения высших порядков. Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами. Метод вариации произвольных постоянных. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
Рассмотрим уравнение вида С учетом обозначения При этом будем полагать, что коэффициенты и правая часть этого уравнения непрерывны на некотором интервале ( конечном или бесконечном).
Теорема. Общее решение линейного неоднородного дифференциального уравнения
Доказательство. Пусть Y – некоторое решение неоднородного уравнения. Тогда при подстановке этого решения в исходное уравнение получаем тождество: Пусть
Далее покажем, что сумма
Вообще говоря, решение Y может быть получено из общего решения, т.к. является частным решением. Таким образом, в соответствии с доказанной теоремой, для решения линейного неоднородного дифференциального уравнения необходимо найти общее решение соответствующего однородного уравнения и каким- то образом отыскать одно частное решение неоднородного уравнения. Обычно оно находится подбором. На практике удобно применять метод вариации произвольных постоянных. Для этого сначала находят общее решение соответствующего однородного уравнения в виде: Затем, полагая коэффициенты Ci функциями от х, ищется решение неоднородного уравнения: Можно доказать, что для нахождения функций Ci(x) надо решить систему уравнений:
Пример. Решить уравнение Решаем линейное однородное уравнение Решение неоднородного уравнения будет иметь вид: Составляем систему уравнений: Решим эту систему:
Из соотношения
Теперь находим В(х).
Подставляем полученные значения в формулу общего решения неоднородного уравнения: Окончательный ответ: Таким образом, удалось избежать нахождения частного решения неоднородного уравнения методом подбора. Вообще говоря, метод вариации произвольных постоянных пригоден для нахождения решений любого линейного неоднородного уравнения. Но т.к. нахождение фундаментальной системы решений соответствующего однородного уравнения может быть достаточно сложной задачей, этот метод в основном применяется для неоднородных уравнений с постоянными коэффициентами.
Читайте также: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (420)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |