Изменение энтропии в неизолированных системахВ неравновесных системах также протекают необратимые процессы и, следовательно, производится энтропия. Но в отличие от изолированных систем в них энтропия не накапливается, а отводится в окружающую среду. Этот отток энтропии обеспечивает диссипацию - необратимый переход части энергии упорядоченных процессов в энергию неупорядоченных процессов. Изменение энтропии в такой системе dS складывается из производства энтропии внутри системы за счет эффектов необратимости diS и из переноса (потока) энтропии через границу системы deS (здесь индекс «е» означает «вне» - «exstra»):
В уравнении (5.12) производство энтропии всегда положительно: diS > 0. Поток энтропии либо отрицателен deS < 0, (система выделят энтропию в окружающую среду), либо положителен de S > 0, (энтропия поступают в систему извне) (рис. 5.2). Если энтропия отводится от системы, то возможны следующие ситуации. При
система асимптотично (бесконечно) стремится к равновесию, и процесс постепенно затухает. При
dS = 0 (5.15) устанавливается стационарное состояние (стационарный процесс), в котором степень упорядочения системы остается неизменной.
внешняя среда Рис. 5.2. Система, в которой diS означает производство энтропии, а deS – обмен энтропией между системой и окружающей средой.
Если диссипация слишком велика, и величина потока энтропии по модулю превышает величину производства энтропии
то изменение энтропии системы будет отрицательно
Тогда из (4.17) следует, что без нарушения второго начала термодинамики ( Заметим, что открытая система не может быть равновесной, так как ее функционирование требует непрерывного поступления из внешней среды вещества и энергии. В динамике тепловых процессов важно не значение энтропии S и даже не изменение энтропии dS, а скорость изменения энтропии. Поэтому соотношение (5.12) можно представить в следующем виде:
где Важным фактором, определяющим состояние системы, является скорость производства энтропии. Рассмотрим неравновесный процесс, который моделирует большой круг явлений в различных областях: в пленочных биосистемах с мембранами, гидропотоках с фильтрами, слабонеравновесных экономических системах и др. Пусть система состоит из двух камер, соединенных пористой стенкой (рис. 5.3). Неравновесность поддерживается разностью температур, которая вызывает тепловой поток (1) и термодиффузионный поток массы (2). Со временем возникшая разность концентраций молекул создает встречный диффузионный поток массы (3) и компенсирует поток массы (2). В результате в системе остается один поток тепла (1) и возникает неравновесное стационарное состояние. В таких состояниях энтропия системы не меняется со временем. Количественно устойчивость стационарного состояния определяется теоремой И.Р. Пригожина (1917 – 2003): в любой закрытой или открытой системе, переходящей в неравновесное стационарное состояние, скорость производства энтропии достигает минимального значения.
Рис. 5.3 Возникновение неравновесного стационарного состояния в системе с T1>T2. Со временем остается лишь один поток тепла (1). Поток массы из-за ΔТ (2) компенсируется встречным потоком массы (3), вызванным концентрационным градиентом.
Стационарное состояние в неизолированных системах является аналогом равновесного состояния изолированных систем. Это состояние, в котором параметры системы остаются неизменными сколь угодно долго. Стационарность – более общее понятие по сравнению с равновесностью, которая является частным случаем стационарности. В стационарном состоянии параметры в разных частях системы могут быть разными, т.е. может иметь место неравновесие и это неравновесие сохраняется. Как указано выше, условие возникновения стационарного состояния открытой системы – минимум скорости производства энтропии
При этом реализуются условия (5.14) и (5.15). Энтропия системы остается постоянной, хотя и не максимальной, как в равновесном состоянии. Стационарное состояние характеризуется почти теми же особенностями, что и равновесное. Однако это более упорядоченное состояние, и данный порядок сохраняется. Теорему И.Р. Пригожина успешно используют для описания процессов «слабо неравновесного» рынка товаров, а также «сильно неравновесного» рынка. Можно увязать (сопоставить) с этой теоремой утверждение, что полезность произведенного товара в каждый предыдущий момент времени выше, чем в последующий. Читателю предлагается сделать это самостоятельно. Центральная роль в динамике неравновесных процессов принадлежит потокам и движущим силам. Как установил Л. Онсагер, они определяют скорость изменения энтропии
Например, рассмотрим экономическую систему (фирма, предприятие), в которой символ i определяет процесс предложения, а параметры Ii, Xi соответственно - поток выпущенного товара и его себестоимость, а символ е – процесс спроса, параметры Ie, Xe соответственно спрос на товар и цена его на рынке. Тогда уравнение (5.20) устанавливает связь между спросом и предложением, которая представлена кривыми спроса и предложения в курсе экономической теории. Важно отметить, что каждый из параметров Ii и Ie в (5.20) зависит от обеих обобщенных сил Xi и Xe, т.е. Ii (Xi, Xe) и Ie (Xi, Xe), чем в частности, обеспечивается связь между спросом и предложением.
Читайте также: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (465)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |