Мегаобучалка Главная | О нас | Обратная связь


Строение слухового анализатора



2015-12-13 2137 Обсуждений (0)
Строение слухового анализатора 0.00 из 5.00 0 оценок




Слух человека устроен так, чтобы улавливать широкий диапазон звуковых волн и превращать их в электрические импульсы, чтобы направлять в мозг для анализа. В отличие от связанного с органом слуха вестибулярного аппарата, нормально работающего практически с рождения человека, слух формируется достаточно долго. Формирование слухового анализатора заканчивается не раньше, чем в 12 лет, и наибольшая острота слуха достигается к 14-19-летнему возрасту. слуховой анализатор имеет три отдела: периферический или орган слуха (ухо); проводниковый, включающий нервные пути; корковый, расположенный в височной доле головного мозга. Причём в коре больших полушарий находится несколько слуховых центров. Некоторые из них (нижние височные извилины) предназначены для восприятия более простых звуков – тонов и шумов, другие связаны со сложнейшими звуковыми ощущениями, которые возникают в то время, когда человек говорит сам, слушает речь или музыку.

Строение человеческого уха Слуховой анализатор человека воспринимает звуковые волны с частотой колебаний от 16 до 20 тыс. в секунду (16-20000 герц, Гц). Верхний звуковой порог у взрослого человека составляет 20 000 Гц; нижний порог – в пределах от 12 до 24 Гц. Дети имеют более высокую верхнюю границу слуха в районе 22000 Гц; у пожилых людей, наоборот, она, обычно, ниже – около 15 000 Гц. Наибольшей восприимчивостью ухо обладает к звукам с частотой колебаний в пределах от 1000 до 4000 Гц. Ниже 1000 Гц и выше 4000 Гц возбудимость органа слуха сильно понижается. Ухо — сложный вестибулярно-слуховой орган. Как и все наши органы чувств, орган слуха человека выполняет две функции. Он воспринимает звуковые волны и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами. Рецепторные аппараты слуховой и вестибулярной системы расположены во внутреннем ухе. Устройство вестибулярной системы можно посмотреть отдельно, а сейчас перейдём к описанию строения частей органа слуха.

Орган слуха состоит из 3-х частей: наружное, среднее и внутреннее ухо, причём наружное и среднее ухо играют роль звукопроводящего аппарата, а внутреннее ухо – звуковоспринимающего. Процесс начинается со звука - колебательного движения воздуха или вибрации, при которой к слушателю распространяются звуковые волны, достигающие, в конце концов, барабанной перепонки. При этом наше ухо чрезвычайно чувствительно и способно почувствовать изменения давления всего в 1-10 атмосфер.

Строение наружного уха Наружное ухо состоит из ушной раковины и наружного слухового прохода. Вначале звук достигает ушных раковин, которые действуют как приёмники звуковых волн. Ушная раковина образована эластичным хрящом, снаружи покрытым кожей. Определение направления звука у человека связано с бинауральным слухом, т. е. со слышанием двумя ушами. Любой боковой звук поступает в одно ухо раньше, чем в другое. Разница во времени (несколько долей миллисекунды) прихода звуковых волн, воспринимаемых левым и правым ухом, даёт возможность определить направление звука. Иными словами, естественное восприятие нами звука – стереофоническое.

Ушная раковина человека имеет свой неповторимый рельеф из выпуклостей, вогнутостей и канавок. Это необходимо для тончайшего акустического анализа, позволяя также распознавать направление и источник звука. Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации источника звука. Таким образом, мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при проектировании динамиков и наушников. Ушная раковина также усиливает звуковые волны, которые далее входят в наружный слуховой проход - пространство от раковины к барабанной перепонке длиной около 2,5 см и диаметром около 0,7 см. Слуховой проход имеет слабо выраженный резонанс на частоте около 3000Гц.

Еще одной интересной характеристикой наружного слухового прохода является наличие ушной серы, которая постоянно выделяется из желёз. Ушная сера — воскообразный секрет 4000 сальных и серных желез слухового прохода. В ее функции входит защита кожи этого прохода от бактериальной инфекции и инородных частиц или, например, насекомых, которые могут попасть в ухо. У разных людей количество серы различно. При избыточном скоплении серы возможно образование серной пробки. Если слуховой проход при этом полностью закупорен, появляются ощущения заложенности уха и понижение слуха, в том числе резонанс собственного голоса в заложенном ухе. Эти нарушения развиваются внезапно, чаще всего при попадании в наружный слуховой проход воды во время купания.

Наружное и среднее ухо разделяются барабанной перепонкой, представляющей собой тонкую соединительно-тканную пластинку. Толщина барабанной перепонки – около 0,1 мм, а диаметр около 9 миллиметров. Снаружи она покрыта эпителием, а изнутри – слизистой оболочкой. Барабанная перепонка располагается наклонно и начинает колебаться при попадании на нее звуковых волн. Барабанная перепонка чрезвычайно чувствительна, однако после определения и передачи колебания перепонка возвращается в исходное положение всего за 0,005 секунды.

Строение среднего уха В нашем ухе звук движется к чувствительным клеткам, воспринимающим звуковые сигналы, через согласующее и усиливающее устройство – среднее ухо. Среднее ухо представляет собой барабанную полость, которая имеет форму маленького плоского барабана с туго натянутой колеблющейся перепонкой и слуховой (евстахиевой) трубой. В полости среднего уха находятся сочленяющиеся между собой слуховые косточки – молоточек, наковальня и стремечко. Крошечные мышцы способствуют передаче звука, регулируя движение этих косточек. Достигнув барабанной перепонки, звук заставляет ее колебаться. Рукоятка молоточка вплетена в барабанную перепонку и, покачиваясь, она приводит молоточек в движение. Другим концом молоточек соединен с наковальней, а последняя с помощью сустава подвижно сочленена со стремечком. К стремечку прикреплена стременная мышца, которая удерживает его у перепонки овального окна (окна преддверия), отделяющего среднее ухо от внутреннего, заполненного жидкостью. В результате передачи движения стремечко, основание которого напоминает поршень, постоянно толкается в перепонку овального окна внутреннего уха.

Функцией слуховых косточек является обеспечение увеличения давления звуковой волны при передаче от барабанной перепонки на перепонку овального окна. Этот усилитель (примерно в 30–40 раз) помогает слабым звуковым волнам, падающим на барабанную перепонку, преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо. При переходе звуковой волны из воздушной среды в жидкую значительная часть звуковой энергии теряется и, поэтому, необходим механизм усиления звука. Однако, при громком звуке этот же механизм понижает чувствительность всей системы, чтобы её не повредить.

Давление воздуха внутри среднего уха должно быть таким же, как и давление вне барабанной перепонки, для обеспечения нормальных условий её колебаний. Для выравнивания давления барабанная полость соединена с носоглоткой при помощи слуховой (евстахиевой) трубы длиной 3,5 см и диаметром около 2 мм. При глотании, зевании и жевании евстахиева труба открывается, впуская внешний воздух. При изменении внешнего давления иногда «закладывает» уши, что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями. Нарушения работы трубки приводит к болям и даже кровотечению в ухе.

Строение внутреннего уха. Механические движения косточек во внутреннем ухе превращаются в электрические сигналы. Внутреннее ухо — полое костное образование в височной кости, разделенное на костные каналы и полости, содержащие рецепторные аппараты слухового анализатора и органа равновесия. Этот отдел органа слуха и равновесия из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка. Улитка представляет собой канал длиной около 32 мм, свёрнутый спиралью и заполненный лимфатическими жидкостями. Получив вибрацию от барабанной перепонки, стремечко своим движением давит на мембрану окна преддверия и создаёт колебания давления внутри жидкости улитки. Эта вибрация распространяется в жидкости улитки и достигает там собственно органа слуха, спирального или кортиева органа. Он и превращает вибрации жидкости в электрические сигналы, которые через нервы идут в головной мозг. Чтобы стремечко могло передать давление через жидкость, в центральной части лабиринта, преддверии, есть круглое окно улитки, покрытое гибкой мембраной. Когда поршень стремечка входит в овальное окно преддверия, мембрана окна улитки выпячивается под давлением жидкости улитки. Колебания в замкнутой полости возможны лишь при наличии отдачи. Роль такой отдачи и выполняет перепонка круглого окна.

Костный лабиринт улитки завёрнут в форме спирали с 2,5 оборотами и содержит внутри перепончатый лабиринт такой же формы. В некоторых местах перепончатый лабиринт соединительными тяжами прикреплён к надкостнице костного лабиринта. Между костным и перепончатым лабиринтом находится жидкость – перилимфа. Звуковая волна, усиленная на 30-40 дБ с помощью системы барабанная перепонка - слуховые косточки, достигает окна преддверия, и ее колебания передаются на перилимфу. Звуковая волна проходит сначала по перилимфе до верхушки спирали, где через отверстие колебания распространяются до окна улитки. Внутри перепончатый лабиринт заполнен другой жидкостью – эндолимфой. Жидкость внутри перепончатого лабиринта (улитковый проток) сверху отделена от перилимфы гибкой покровной пластинкой, а снизу - эластичной основной мембраной, составляющими вместе перепончатый лабиринт. На основной мембране находится звуковоспринимающий аппарат, кортиев орган. Основная мембрана состоит из большого количества (24000) фиброзных волокон различной длины, натянутых, как струны. Эти волокна образуют эластическую сеть, которая в целом резонирует строго градуированными колебаниями.

Нервные клетки кортиевого органа превращают колебательные движения пластинок в электрические сигналы. Они называются волосковыми клетками. Внутренние волосковые клетки расположены в один ряд, их насчитывается 3,5 тыс. Наружные волосковые клетки располагаются в три-четыре ряда, их насчитывается 12–20 тыс. Каждая волосковая клетка имеет удлиненную форму, на ней имеется 60–70 мельчайших волосков (стереоцилий) длиной 4–5 мкм.

Вся энергия звука оказывается сосредоточенной в пространстве, ограниченном стенкой костной улитки и основной мембраной (единственное податливое место). Волокна основной мембраны имеют разную длину и, соответственно, разную резонансную частоту. Самые короткие волокна расположены около овального окна, их резонансная частота около 20000 Гц. Самые длинные – в верхушке спирали, имеют резонансную частоту около 16 Гц. Получается, что каждая волосковая клетка, в зависимости от расположения на основной мембране, настроена на определенную звуковую частоту, причем клетки, настроенные на низкие частоты, располагаются в верхней части улитки, а высокие частоты улавливаются клетками нижней части улитки. Когда волосковые клетки по каким-то причинам гибнут, человек теряет способность воспринимать звуки соответствующих частот.

Звуковая волна распространяется по перилимфе от окна преддверия до окна улитки практически мгновенно, примерно за 4*10-5 секунды. Вызванное этой волной гидростатическое давление сдвигает покровную пластинку относительно поверхности кортиева органа. В результате покровная пластинка деформирует пучки стереоцилий волосковых клеток, что приводит к их возбуждению, передающемуся окончаниям первичных сенсорных нейронов.

Различия ионного состава эндолимфы и перилимфы создают разность потенциалов. И между эндолимфой и внутриклеточной средой рецепторных клеток разность потенциалов достигает примерно 0,16 вольт. Столь значительная разность потенциалов способствует возбуждению волосковых клеток даже при действии слабых звуковых сигналов, вызывающих незначительные колебания основной мембраны. При деформации стереоцилий волосковых клеток в них возникает рецепторный потенциал, что приводит к выделению регулятора, действующего на окончания волокон слуховых нервов и тем самым возбуждающего их.

Волосковые клетки связаны с окончаниями нервных волокон, по выходе из кортиева органа образующих слуховой нерв (улитковую ветвь преддверно-улиткового нерва). Звуковые волны, преобразованные в электрические импульсы, передаются по слуховому нерву в височную зону коры головного мозга.

Слуховой нерв состоит из тысяч тончайших нервных волокон. Каждое из них начинается от определенного участка улитки и, тем самым, передает определенную звуковую частоту. С каждым волокном слухового нерва связано несколько волосковых клеток, так что в центральную нервную систему приходит около 10000 волокон. Импульсы от низкочастотных звуков, передаются по волокнам, исходящим из верхушки улитки, а от высокочастотных - по волокнам, связанным с ее основанием. Таким образом, функцией внутреннего уха является преобразование механических колебаний в электрические, так как мозг может воспринимать только электрические сигналы.

Орган слуха – это аппарат, через который мы получаем звуковую информацию. Но слышим мы так, как воспринимает, перерабатывает и запоминает наш мозг. В мозгу создаются звуковые представления или образы. И, если в нашей голове звучит музыка или вспоминается чей-то голос, то благодаря тому, что мозг имеет входные фильтры, запоминающее устройство и звуковую карту, и может быть для нас и надоевшим динамиком, и удобным музыкальным центром.

 



2015-12-13 2137 Обсуждений (0)
Строение слухового анализатора 0.00 из 5.00 0 оценок









Обсуждение в статье: Строение слухового анализатора

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2137)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)