Мегаобучалка Главная | О нас | Обратная связь


Функциональные последовательности



2015-12-15 1107 Обсуждений (0)
Функциональные последовательности 0.00 из 5.00 0 оценок




 

Определение. Если членами ряда являются функции переменой х, то ряд называется функциональным.

Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х, при которых ряд сходится.

Совокупность таких значений называется областью сходимости.

Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:

Определение. Говорят, что функциональная последовательность сходится к функции на отрезке , если для любого числа и любой точки х из рассматриваемого отрезка существует номер , такой, что неравенство

выполняется при .

При выбранном значении каждой точке отрезка соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка , будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка , т.е. будет общим для всех точек.

Определение. Говорят, что функциональная последовательность равномерно сходится к функции на отрезке , если для любого числа существует номер , такой, что неравенство

выполняется при для всех точек отрезка .

Пример. Рассмотрим последовательность

Данная последовательность сходится на всей числовой оси к функции , т.к.

.

Построим графики этой последовательности:

 

 

 

При увеличении числа n график последовательности приближается к оси х.

Функциональные ряды

Определение. Частичными суммами функционального ряда называются функции

Определение. Функциональный ряд называется сходящимся в точке , если в этой точке сходится последовательность его частных сумм. Предел последовательности называется суммой ряда в точке .

Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимостиряда.

Определение. Ряд называется равномерно сходящимся на отрезке , если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

 

Теорема. (Критерий Коши равномерной сходимости ряда). Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа существовал такой номер , что при и любом целом неравенство

выполнялось бы для всех х на отрезке .

Теорема. (Признак равномерной сходимости Вейерштрасса) Ряд сходится равномерно и абсолютно на отрезке , если модули его членов на этом же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами:

т.е. имеет место неравенство:

.

При этом говорят, что в этом случае функциональный ряд мажорируетсячисловым рядом .

Пример. Исследовать на сходимость ряд .

Так как всегда, то очевидно, что .

При этом известно, что обобщённый гармонический ряд при сходится, то в соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале.

Пример. Исследовать на сходимость ряд .

На отрезке выполняется неравенство т.е. по признаку Вейерштрасса на этом отрезке исследуемый ряд сходится, а на интервалах , расходится.

 



2015-12-15 1107 Обсуждений (0)
Функциональные последовательности 0.00 из 5.00 0 оценок









Обсуждение в статье: Функциональные последовательности

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1107)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)